Abstract:
A semiconductor laser device having an enclosed laser cavity is disclosed. The semiconductor laser is of the heterostructure type and embodiments of single and double heterostructures are disclosed. In both of the heterostructure devices disclosed, the side surfaces of the active region are well defined. This is accomplished, in one instance, by surrounding the laser active region on all side surfaces with a higher band gap material which also has a lower index of refraction. Thus, the laser cavity is partially enclosed by a semiconductor material on one conductivity type of a band gap higher than the band gap of the material of the laser cavity. The remaining portion is enclosed by a band gap material higher than the material of the laser cavity but is of opposite conductivity type to the first mentioned higher band gap material. In another instance the side surfaces of the laser active region are partially surrounded by a high band gap material and partially by a region of opposite conductivity type to the active region; both of which regions contribute carriers to the active region. The laser devices disclosed are made, for example, from layers of appropriately doped P and N type gallium arsenide and from layers of P and N type gallium aluminum arsenide. The resulting devices can have very small cavity cross sections, optical and electrical confinement of the excitation at all the side surfaces, low electrical series resistance and a low thermal resistance due to geometrical factors. The laser devices disclosed may be fabricated using well known fabrication techniques which include deposition of the layers of the laser by liquid phase epitaxy (LPE), molecular beam epitaxy (MBE) and melt-back or etching techniques. The latter techniques define the laser cavity.
Abstract:
The converter obtains an efficient conversion of solar electromagnetic radiation into electrical power. A p-n junction is fabricated close to an optical surface of a region of n-type GaAs which is receptive of the solar radiation. There is a window on the optical surface consisting of a window layer of Ga1 xAlxAs, where x is less than one and greater than zero with a composition to cause the window layer to contribute selectively to absorbing and transmitting certain components of the incoming solar radiation. The layer of Ga1 xAlxAs is made nearly transparent to electromagnetic radiation and is nearly absorbent of the energetic particle radiation content of the received solar radiation. The window layer is an integral part of the procedure for forming the p-n junction. It contributes the p-type doping species to the junction by diffusion into the n-type GaAs substrate. For certain applications, the Ga1 xAlxAs window can be removed by etching with aqueous solution of HCl. If the window if removed, the ohmic contact is then made to the optical surface of the p-type GaAs. Illustratively, another structure provided by this disclosure includes a window of GaP of p-type conductivity on the surface of a region of n-type InP with a p-type transition region of InP therebetween.
Abstract:
P-TYPE GALLIUM ARSENIDE IS GROWN EPITAXIALLY FROM SOLUTION IN GALLIUM ON THE SURFACE OF N-TYPE GALLIUM ARSENIDE, WITH SILICON AS DOPANT ON BOTH SIDE OF THE JUNCTION. A RECOMBINATION RADIATION DEVICE IS MADE BY THE METHOD.
Abstract:
GREEN-EMITTING ELECTROLUMINESCENT GALLIUM PHOSPHIDE DIODES ARE GROWN BY LIQUID PHASE EPITAXY. A GA-GAP MELT CONTAINED IN A COVERED CRUICIBLE IS PLACED IN A VERTICAL FURNACE. A GAP SUBSTRATE WAFER IS INSERTED INTO THE MELT WHICH HAS BEEN MAINTAINED AT A TEMPERATURE OF ABOUT 1110-1140*C. AN N-TYPE GAP LAYER IS PRODUCED BY THE ADDITION OF A DOPANT SELECTED FROM S, SE, AND TE TO THE MELT WHICH IS SLOWLY COOLED TO A TEMPERATURE OF ABOUT 1070-1100*C., AT WHICH TIME THE MELT IS COUNTERDOPED WITH AN ACCEPTOR DOPANT, E.G., ZN OR CD. THE MELT IS FURTHER COOLED TO ABOUT 1030-1060*C., CAUSING THE GROWTH OF A P-TYPE LAYER, AFTER WHICH THE SUBSTRATE IS REMOVED FROM THE METAL AND FURTHER COOLED TO AMBIENT TEMPERATURES. ELECTROLUMINESCENT DIODES ARE THEN PREPARED BY THINNING THE SUBSTRATE SIDE OF THE WAFER TO REDUCE SERIES RESISTANCE. AU-ZN AND AU-SN ALLOY DOTS ARE APPLIED TO THE P AND N SIDE RESPECTIVELY, OF SAWED OR CLEAVED SECTIONS OF THE WAFER. GREEN-EMITTING DIODES PREPARED BY THE ABOVE METHOD HAVE EFFICIENCIES OF ABOUT 2.7X10-4, WHICH EFFICIENCIES CAN BE IMPROVED BY A FACTOR OF 2 OR MORE BY COATING THE DIODES WITH ANTI-REFLECTIVE EPOXY COATINGS. THE DIODES FIND UTILITY AS PANEL INDICATORS.
Abstract:
The converter obtains an efficient conversion of solar electromagnetic radiation into electrical power. A p-n junction is fabricated close to an optical surface of a region of n-type GaAs which is receptive of the solar radiation. There is a window on the optical surface consisting of a window layer of Ga1 xAlxAs, where x is less than one and greater than zero with a composition to cause the window layer to contribute selectively to absorbing and transmitting certain components of the incoming solar radiation. The layer of Ga1 xAlxAs is made nearly transparent to electromagnetic radiation and is nearly absorbent of the energetic particle radiation content of the received solar radiation. The window layer is an integral part of the procedure for forming the p-n junction. It contributes the p-type doping species to the junction by diffusion into the n-type GaAs substrate. For certain applications, the Ga1 xAlxAs window can be removed by etching with aqueous solution of HCl. If the window is removed, the ohmic contact is then made to the optical surface of the p-type GaAs. Illustratively, another structure provided by this disclosure includes a window of GaP of p-type conductivity on the surface of a region of n-type InP with a p-type transition region of InP therebetween.
Abstract:
A gallium arsenide crystal is prepared by placing gallium in a fused silica vessel in a reaction chamber, placing arsenic in the chamber and synthesising the crystal as a melt in the vessel in an atmosphere of gallous oxide produced by reacting gallic oxide with carbon in the reaction chamber, whereby silicon contamination of the melt is reduced. The gallic oxide may be placed in a carbon boat and heated to a temperature in the range 900 DEG C. to 1250 DEG C. to control the pressure of gallous oxide in the atmosphere. The silica vessel containing gallium may be placed at the high temperature end of a reaction chamber at a temperature above the melting point of gallium arsenide (preferably 1250 DEG C.), arsenic may be placed at the low temperature end at a temperature above its sublimation point (preferably 605 DEG C.) and the carbon boat containing gallic oxide may be placed between the two portions of the chamber at an intermediate temperature in the range 900 DEG to 1250 DEG C. which may be determined by the position of the boat. The carbon boat is preferably heated to 1000 DEG C. to obtain a crystal with minimum contamination. The gallium arsenide melt is cooled in the vessel to form the crystal.
Abstract:
A surface termination of a compound semiconductor is provided wherein conditions are provided for a pristine surface to be retained in an unpinned condition and a surface layer of a non-metallic material is provided. A GaAs substrate is heated in an oxygen-free atmosphere at high temperature with hydrogen sulfide, producing a pristine surface with a coating of gallium sulfide covered with a 1,000 nanometer covering of low temperature plasma enhanced chemical vapor deposited silicon dioxide.
Abstract:
Self-completing semiconductor materials may be converted to p-conductivity by charged particle irradiation which rearranges the atoms in the crystal lattice and may then be used in a heterostructure semiconductor device to permit the including in the device of materials with a wide range of new properties.