Abstract:
PROBLEM TO BE SOLVED: To provide a method for enhancing the efficiency of the proximity correction of a pattern forming process in terms of given chip layout design, and constitution therefor. SOLUTION: This method includes a step G01 for describing the pattern forming process in accordance with at least one layout parameter, a step G03 for making the distribution of at least one parameter discrete, a step G05 for providing an error correction table linking the correction of layout with at least one parameter and a step G06 for correcting the layout by applying correction in the table to the layout at least once.
Abstract:
A semiconductor device can be fabricated using a photomask that has been modified using an assist feature design method based on normalized feature spacing. Before the device can be fabricated, a layout of original shapes is designed (402). For at least some of the original shapes, the width of the shape and a distance to at least one neighboring shape are measured (404). A modified shape can then be generated by moving edges of the original shape based on the width and distance measurements (406). This modification can be performed on some or all of the original shapes (408). For each of the modified shapes, a normalized space and correct number of assist features can be computed (410). The layout is then modified by adding the correct number of assist features in a space between the modified shape and the neighboring shape (412). This modified layout can then be used in producing a photomask, which can in turn be used to produce a semiconductor device.
Abstract:
A method of making a photolithography mask for use in creating an electrical fuse on a semiconductor structure comprises initially determining a pattern for a desired electrical fuse, with the pattern including a fuse portion of substantially constant width except for a localized narrowed region of the fuse portion at which the electrical fuse is designed to blow. The method then includes providing a photolithography mask substrate and creating on the photolithography mask substrate a fuse mask element adapted to absorb transmission of an energy beam. The fuse mask element has a first mask portion of substantially constant width corresponding to the desired electrical fuse pattern portion of substantially constant width, and a second mask portion corresponding to the localized narrowed region of the fuse portion. The second mask portion comprises either an additional mask element spaced from the first mask portion, a narrowed width portion, or a gap in the first mask portion. The second mask portion is of a configuration sufficient to create a latent image of the electrical fuse pattern, including the localized narrowed region of the fuse portion at which the electrical fuse is designed to blow, upon passing the energy beam through the photolithography mask and onto a resist layer. Preferably, the fuse portion of substantially constant width on the determined fuse pattern has a design width less than about 0.25 mu m, and wherein the localized narrowed region of the fuse portion has a design width less than the design width of the fuse portion.
Abstract:
A method to optimize the size and filling of decoupling capacitors for very large scale integrated circuits (VLSI) using existing lithographic fillers. The method combines the automatic or manual generation of lithographic fill patterns with the forming of the capacitors. According to the method, when the chip layout is about to be finished, all remaining empty space on the chip gets identified by a layout tool. Then, the closest power-supply nets get extracted. All power supplies and their combinations are sorted in a connection table which determines the appropriate types of capacitances once the power-supply nets closest to the empty spaces extracted from the layout. The empty spaces are then assigned appropriate decoupling capacitances. Decoupling capacitors generated by the method are suitable for VLSI power supplies for noise reduction.
Abstract:
A method of making a photolithography mask for use in creating an electrical fuse on a semiconductor structure comprises initially determining a pattern for a desired electrical fuse, with the pattern including a fuse portion of substantially constant width except for a localized narrowed region of the fuse portion at which the electrical fuse is designed to blow. The method then includes providing a photolithography mask substrate and creating on the photolithography mask substrate a fuse mask element adapted to absorb transmission of an energy beam. The fuse mask element has a first mask portion of substantially constant width corresponding to the desired electrical fuse pattern portion of substantially constant width, and a second mask portion corresponding to the localized narrowed region of the fuse portion. The second mask portion comprises either an additional mask element spaced from the first mask portion, a narrowed width portion, or a gap in the first mask portion. The second mask portion is of a configuration sufficient to create a latent image of the electrical fuse pattern, including the localized narrowed region of the fuse portion at which the electrical fuse is designed to blow, upon passing the energy beam through the photolithography mask and onto a resist layer. Preferably, the fuse portion of substantially constant width on the determined fuse pattern has a design width less than about 0.25 mu m, and wherein the localized narrowed region of the fuse portion has a design width less than the design width of the fuse portion.
Abstract:
A method of fabricating a semiconductor device is outlined in Figure 3. An ideal (or desired) pattern of a layer of the semiconductor device is designed (305). A first pass corrected pattern is then derived by correcting the ideal patterns for major effects, e.g., aerial image effects (315, 320). A second pass corrected pattern is then derived by correcting the first pass corrected patterns for remaining errors (340). The second pass corrected pattern can be used to build a photomask (345). The photomask can then be used to produce a semiconductor device, such a memory chip or logic chip (350).
Abstract:
A method to optimize the size and filling of decoupling capacitors for very large scale integrated circuits (VLSI) using existing lithographic fillers. The method combines the automatic or manual generation of lithographic fill patterns with the forming of the capacitors. According to the method, when the chip layout is about to be finished, all remaining empty space on the chip gets identified by a layout tool. Then, the closest power-supply nets get extracted. All power supplies and their combinations are sorted in a connection table which determines the appropriate types of capacitances once the power-supply nets closest to the empty spaces extracted from the layout. The empty spaces are then assigned appropriate decoupling capacitances. Decoupling capacitors generated by the method are suitable for VLSI power supplies for noise reduction.
Abstract:
A method, and a system for employing the method, for providing a modified optical proximity correction (OPC) for correcting distortions of pattern lines on a semiconductor circuit wafer. The method comprises producing a mask having one or more pattern regions, and producing the semiconductor circuit wafer from the mask. The pattern regions include one or more non-edge pattern regions located adjacent to other of the non-edge pattern regions on the mask. The pattern regions further include one or more edge pattern regions located at or near an area on the mask not having the other non-edge pattern regions. The edge pattern regions have widths calculated to minimize the variance in dimensions between one or more pattern lines on the semiconductor circuit wafer formed from them and one or more pattern lines on the semiconductor circuit wafer formed from the non-edge pattern regions. The distances between any two of the pattern regions are calculated to minimize the variance in dimensions between the one or more pattern lines formed from the edge pattern regions and the one or more pattern lines formed from the non-edge pattern regions. The above producing step includes producing the semiconductor circuit wafer from the mask having the pattern lines formed from the non-edge pattern regions and having the pattern lines formed from the edge pattern regions, where the pattern lines formed from the non-edge regions are permitted to differ in distances between them.
Abstract:
A method to optimize the size and filling of decoupling capacitors for very large scale integrated circuits (VLSI) using existing lithographic fillers. The method combines the automatic or manual generation of lithographic fill patterns with the forming of the capacitors. According to the method, when the chip layout is about to be finished, all remaining empty space on the chip gets identified by a layout tool. Then, the closest power-supply nets get extracted. All power supplies and their combinations are sorted in a connection table which determines the appropriate types of capacitances once the power-supply nets closest to the empty spaces extracted from the layout. The empty spaces are then assigned appropriate decoupling capacitances. Decoupling capacitors generated by the method are suitable for VLSI power supplies for noise reduction.