Abstract:
반도체디바이스의면적스케일링을위한수직집적방식및 회로요소아키텍쳐가설명된다. 한예에서, 인버터구조물은상위영역및 하위영역으로수직으로분리된반도체핀을포함한다. 제1 복수의게이트구조물은반도체핀의상위영역을제어하기위해포함된다. 제2 복수의게이트구조물은반도체핀의하위영역을제어하기위해포함된다. 제2 복수의게이트구조물은제1 복수의게이트구조물의도전형과는반대의도전형을갖는다.
Abstract:
A method of forming an isolated tri-gate semiconductor body comprises patterning a bulk substrate to form a fin structure, depositing an insulating material around the fin structure, recessing the insulating material to expose a portion of the fin structure that will be used for the tri-gate semiconductor body, depositing a nitride cap over the exposed portion of the fin structure to protect the exposed portion of the fin structure, and carrying out a thermal oxidation process to oxidize an unprotected portion of the fin structure below the nitride cap. The oxidized portion of the fin isolates the semiconductor body that is being protected by the nitride cap. The nitride cap may then be removed. The thermal oxidation process may comprise annealing the substrate at a temperature between around 900°C and around 1100°C for a time duration between around 0.5 hours and around 3 hours.
Abstract:
A semiconductor device comprises a substrate and a semiconductor body formed on the substrate. The semiconductor body comprises a source region; and a drain region. The source region or the drain region, or combinations thereof, comprises a first side surface, a second side surface, and a top surface. The first side surface is opposite the second side surface, the top surface is opposite the bottom surface. The source region or the drain region, or combinations thereof, comprise a metal layer formed on the substantially all of the first side surface, substantially all of the second side surface, and the top surface.
Abstract:
A transistor structure that increases uniaxial compressive stress on the channel region of a tri-gate transistor comprises at least two semiconductor bodies formed on a substrate, each semiconductor body having a pair of laterally opposite sidewalls and a top surface, a common source region formed on one end of the semiconductor bodies, wherein the common source region is coupled to all of the at least two semiconductor bodies, a common drain region formed on another end of the semiconductor bodies, wherein the common drain region is coupled to all of the at least two semiconductor bodies, and a common gate electrode formed over the at least two semiconductor bodies, wherein the common gate electrode provides a gate electrode for each of the at least two semiconductor bodies and wherein the common gate electrode has a pair of laterally opposite sidewalls that are substantially perpendicular to the sidewalls of the semiconductor bodies.
Abstract:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
Abstract:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
Abstract:
Techniques and methods related to strained NMOS and PMOS devices without relaxed substrates, systems incorporating such semiconductor devices, and methods therefor may include a semiconductor device that may have both n-type and p-type semiconductor bodies. Both types of semiconductor bodies may be formed from an initially strained semiconductor material such as silicon germanium. A silicon cladding layer may then be provided at least over or on the n-type semiconductor body. In one example, a lower portion of the semiconductor bodies is formed by a Si extension of the wafer or substrate. By one approach, an upper portion of the semiconductor bodies, formed of the strained SiGe, may be formed by blanket depositing the strained SiGe layer on the Si wafer, and then etching through the SiGe layer and into the Si wafer to form the semiconductor bodies or fins with the lower and upper portions.
Abstract:
Ausführungsformen der Erfindung weisen vertikal orientierte Lang-Kanal-Transistoren und Verfahren zum Ausbilden derartiger Transistoren auf. In einer Ausführungsform kann ein Verfahren zum Ausbilden eines derartigen Transistors das Ausbilden einer Finne auf einem Halbleitersubstrat aufweisen. Die Ausführungsformen können auch das Ausbilden eines Abstandshalters über einem oberen Abschnitt der Finne aufweisen, und ein unterer Abschnitt der Finne, der nicht durch den Abstandshalter abgedeckt wird, kann freigelegt werden. Die Ausführungsformen können auch das Ausbilden einer Schicht eines Gatter-Dielektrikums über dem freigelegten unteren Abschnitt der Finne aufweisen. Dann kann gemäß einer Ausführungsform eine Gatter-Elektrode abgeschieden werden. Ausführungsformen können das Freilegen eines oberen Abschnitts der Finne und das Ausbilden einer ersten Quellen-/Senken-(S-/D-, Source-/Drain-) Region in dem oberen Abschnitt der Finne aufweisen. Die zweite S-/D-Region kann durch Entfernen des Halbleitersubstrats, um einen Bodenabschnitt der Finne freizulegen, und das Ausbilden der zweiten S-/D-Region in dem Bodenabschnitt der Finne ausgebildet werden.
Abstract:
Nanodrahtstrukturen mit nicht diskreten Source- und Drain-Gebieten werden beschrieben. Zum Beispiel umfasst ein Halbleiterbauelement eine Pluralität von vertikal gestapelten Nanodrähten, die über einem Substrat angeordnet sind. Jeder Nanodraht umfasst ein diskretes Kanal-Gebiet, das im Nanodraht verfügbar ist. Ein Gateelektrodenstapel umschließt die Vielzahl der vertikal gestapelten Nanodrähte. Ein Paar aus nicht diskreten Source- und Drain-Gebieten ist auf beiden Seiten der und angrenzend an die diskreten Kanal-Gebiete einer Vielzahl der vertikal gestapelten Nanodrähte angeordnet.