Abstract:
A method to reduce contact resistance of n-channel transistors by using a III-V semiconductor interlayer in source and drain is generally presented. In this regard, a device is introduced comprising an n-type transistor with a source region and a drain region a first interlayer dielectric layer adjacent the transistor, a trench through the first interlayer dielectric layer to the source region, and a conductive source contact in the trench, the source contact being separated from the source region by a III-V semiconductor interlayer. Other embodiments are also disclosed and claimed.
Abstract:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a III-V tri-gate fin on a substrate, forming a cladding material around the III-V tri-gate fin, and forming a hi k gate dielectric around the cladding material.
Abstract:
Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
Abstract:
Conductivity improvements in III-V semiconductor devices are described. A first improvement includes a barrier layer that is not coextensively planar with a channel layer. A second improvement includes an anneal of a metal/Si, Ge or SiliconGermanium/III-V stack to form a metal-Silicon, metal-Germanium or metal-SiliconGermanium layer over a Si and/or Germanium doped III-V layer. Then, removing the metal layer and forming a source/drain electrode on the metal-Silicon, metal-Germanium or metal-SiliconGermanium layer. A third improvement includes forming a layer of a Group IV and/or Group VI element over a III-V channel layer, and, annealing to dope the III-V channel layer with Group IV and/or Group VI species. A fourth improvement includes a passivation and/or dipole layer formed over an access region of a III-V device.
Abstract:
A contact to a source or drain region. The contact has a conductive material, but that conductive material is separated from the source or drain region by an insulator.
Abstract:
Techniques are disclosed for forming transistor devices having source and drain regions with high concentrations of boron doped germanium. In some embodiments, an in situ boron doped germanium, or alternatively, boron doped silicon germanium capped with a heavily boron doped germanium layer, are provided using selective epitaxial deposition in the source and drain regions and their corresponding tip regions. In some such cases, germanium concentration can be, for example, in excess of 50 atomic % and up to 100 atomic %, and the boron concentration can be, for instance, in excess of 1E20 cm-3. A buffer providing graded germanium and/or boron concentrations can be used to better interface disparate layers. The concentration of boron doped in the germanium at the epi-metal interface effectively lowers parasitic resistance without degrading tip abruptness. The techniques can be embodied, for instance, in planar or non-planar transistor devices.
Abstract:
Embodiments of the present disclosure describe techniques and configurations to impart strain to integrated circuit devices such as horizontal field effect transistors. An integrated circuit device includes a semiconductor substrate, a first barrier layer coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier layer, the quantum well channel comprising a first material having a first lattice constant, and a source structure coupled to the quantum well channel, the source structure comprising a second material having a second lattice constant, wherein the second lattice constant is different than the first lattice constant to impart a strain on the quantum well channel. Other embodiments may be described and/or claimed.