Abstract:
For three-dimensional topography measurement of a surface of an object patterned illumination is projected on the surface through an objective. A relative movement between the object and the objective is carried out, and plural images of the surface are recorded through the objective by a detector. The direction of the relative movement includes an oblique angle with an optical axis of the objective. Height information for a given position on the surface is derived from a variation of the intensity recorded from the respective position. Also, patterned illumination and uniform illumination may be projected alternatingly on the surface, while images of the surface are recorded during a relative movement of the object and the objective along an optical axis of the objective. Uniform illumination is used for obtaining height information for specular structures on the surface, patterned illumination is used for obtaining height information on other parts of the surface.
Abstract:
An apparatus (1) and a method for the three dimensional inspection of saw marks (2) on at least one surface (3) of a wafer (4) are disclosed. At least one camera (6) is required to capture an image of the entire surface (3) of the wafer (4). At least one line projector (8) provides a light bundle (5), centered about a central beam axis (9). The line projector (8) is arranged such that the central beam axis (9) is at an acute angle (a) with regard to the plane (P) of the wafer (4). A line shifter (12) is positioned in the light bundle (5) between each line projector (8) and the surface (3) of the wafer (4). A frame grabber (14) and an image processor (16) are used to synchronize and coordinate the image capture and the position of the pattern (20) of lines (22) on the front side (3F) and/or the back side (3B) of the wafer (4).
Abstract:
A ring light illuminator with annularly arranged light sources is disclosed. To each light source there corresponds a beam shaper comprising a light collector, a homogenizing means for light from the light source, and an imaging means for imaging an output of the homogenizing means into an area to be illuminated. The homogenizing means in embodiments is a rod, into which light from the light collector is directed. The end of the rod opposite the light collector is imaged by the imaging means into the area to be illuminated.
Abstract:
A ring light illuminator with annularly arranged light sources is disclosed. To each light source there corresponds a beam shaper comprising a light collector, a homogenizing means for light from the light source, and an imaging means for imaging an output of the homogenizing means into an area to be illuminated. The homogenizing means in embodiments is a rod, into which light from the light collector is directed. The end of the rod opposite the light collector is imaged by the imaging means into the area to be illuminated.
Abstract:
For three-dimensional topography measurement of a surface of an object patterned illumination is projected on the surface through an objective. A relative movement between the object and the objective is carried out, and plural images of the surface are recorded through the objective by a detector. The direction of the relative movement includes an oblique angle with an optical axis of the objective. Height information for a given position on the surface is derived from a variation of the intensity recorded from the respective position. Also, patterned illumination and uniform illumination may be projected alternatingly on the surface, while images of the surface are recorded during a relative movement of the object and the objective along an optical axis of the objective. Uniform illumination is used for obtaining height information for specular structures on the surface, patterned illumination is used for obtaining height information on other parts of the surface.
Abstract:
An apparatus (1) and a method for the three dimensional inspection of saw marks (2) on at least one surface (3) of a wafer (4) are disclosed. At least one camera (6) is required to capture an image of the entire surface (3) of the wafer (4). At least one line projector (8) provides a light bundle (5), centered about a central beam axis (9). The line projector (8) is arranged such that the central beam axis (9) is at an acute angle (a) with regard to the plane (P) of the wafer (4). A line shifter (12) is positioned in the light bundle (5) between each line projector (8) and the surface (3) of the wafer (4). A frame grabber (14) and an image processor (16) are used to synchronize and coordinate the image capture and the position of the pattern (20) of lines (22) on the front side (3F) and/or the back side (3B) of the wafer (4).
Abstract:
Un procedimiento para la medición topográfica tridimensional óptica de una superficie (21) de un objeto (2), el procedimiento comprendiendo las etapas de: proyectar iluminación con patrón a través de un objetivo (5) sobre la superficie del objeto (21); realizar un movimiento relativo entre el objeto (2) y el objetivo (5), donde una dirección del movimiento relativo incluye un ángulo oblicuo (23) con un eje óptico (51) del objetivo, y donde la superficie pasa a través de un plano focal (52) del objetivo durante el movimiento relativo; y donde la superficie del objeto (21) define un plano de referencia que es paralelo al plano focal (52) del objetivo (5); registrar una pluralidad de imágenes de la superficie a través del objetivo (5) durante el movimiento relativo; derivar la información de altura para una posición respectiva sobre la superficie del objeto de la variación de la intensidad registrada desde la posición respectiva en la pluralidad de imágenes; donde la iluminación con patrón es generada por iluminación incoherente de una máscara de patrón (33), donde la máscara de patrón es una rejilla, donde la rejilla es una rejilla flameada; y donde, para la iluminación con patrón, se usan solamente un orden de difracción 0 y un orden difractado, que surge de la máscara del patrón, ambos órdenes de difracción teniendo la misma intensidad.
Abstract:
For three-dimensional topography measurement of a surface of an object patterned illumination is projected on the surface through an objective. A relative movement between the object and the objective is carried out, and plural images of the surface are recorded through the objective by a detector. The direction of the relative movement includes an oblique angle with an optical axis of the objective. Height information for a given position on the surface is derived from a variation of the intensity recorded from the respective position. Also, patterned illumination and uniform illumination may be projected alternatingly on the surface, while images of the surface are recorded during a relative movement of the object and the objective along an optical axis of the objective. Uniform illumination is used for obtaining height information for specular structures on the surface, patterned illumination is used for obtaining height information on other parts of the surface.
Abstract:
A ring light illuminator with annularly arranged light sources is disclosed. To each light source there corresponds a beam shaper comprising a light collector, a homogenizing means for light from the light source, and an imaging means for imaging an output of the homogenizing means into an area to be illuminated. The homogenizing means in embodiments is a rod, into which light from the light collector is directed. The end of the rod opposite the light collector is imaged by the imaging means into the area to be illuminated.