Abstract:
PROBLEM TO BE SOLVED: To provide a radiation-emitting semiconductor component which can be produced from a wafer with a better area yield and is suitable to high optical output, and a method for the production thereof. SOLUTION: The radiation-emitting semiconductor component has a radiation-transmissive substrate, on the underside of which a radiation-generating layer is arranged, in which the substrate has inclined side surfaces, in which the refractive index of the substrate is greater than the refractive index of the radiation-generating layer, in which the difference in refractive index results in an unilluminated substrate region, into which no photons are coupled directly from the radiation-generating layer, and in which the substrate has essentially perpendicular side surfaces in the unilluminated region. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor chip suitable for high radiation output so that output efficiency of radiation generated in the semiconductor chip is improved. SOLUTION: At least one vertical surface of a semiconductor chip, which is used as an output surface, is longer than a lateral surface in an extending direction of an active zone. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an enhanced electric contact in a high reflection factor, excellent ohmic contact to a semiconductor, each other's excellent adhesion between layers which form excellent adhesion and contact on the semiconductor, good thermal stability, high stability to the environmental-impact factor, and soldering possibility and structuring possibility. SOLUTION: This electric contact of the photoelectron semiconductor chip 1 comprises a mirror layer 2 made of metal or metal alloy, a protective layer 3 for reducing the corrosion of the mirror layer 2, a barrier layer 4, an adhesion intermediate layer 5, and a solder layer 8. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide an light emitting device with its light emitting efficiency further improved. SOLUTION: A window is equipped with a side face having a 1st partial area vertical to a primary surface and a 2nd partial area oblique to the same. The 1st area forms an edge together with the primary surface and is away from the primary surface by a distance d changing gradually into the 2nd area, and the boundary of the radially formed plane in its lateral direction is positioned with a distance l from the edge formed by the 1st area and the primary surface. In this context, l>=d/tanβ, wherein β=arccos (n1 /n2 ), wherein n1 is the refraction factor of the multilayer structure, n2 is the refraction factor of the window, and n1
Abstract:
PROBLEM TO BE SOLVED: To develop a semiconductor device that is equipped with a transition section having an electric series resistance as small as possible between a semiconductor body and a substrate. SOLUTION: In the semiconductor device, a conductive substrate (1) and a semiconductor body (3) are provided, and the semiconductor body (3) has at least one nitride-compound semiconductor and at the same time is arranged on the surface of the substrate (1). In this case, a conductive mask layer (2) having a specific mask structure for reducing the series resistance in the semiconductor device is arranged between the substrate (1) and the semiconductor body (3), and the surface of the substrate (1) is partially covered with the mask layer. COPYRIGHT: (C)2003,JPO
Abstract:
Optoelectronic component (20) having a layer stack (10), comprising at least the following: a layer sequence constituting a semiconductor light emitting diode (5) and comprising at least a first light emitting diode layer (2), a second light emitting diode layer (4) and an optically active zone (3) between the first (2) and the second light emitting diode layer (4), wherein the two light emitting diode layers (2, 4) are in each case formed from a III-V semiconductor material containing in each case at least one of the elements aluminium, gallium and indium and in each case at least one of the elements nitrogen, phosphorus and arsenic, and wherein the first light emitting diode layer (2) is an n-doped layer and the second light emitting diode layer (4) is a p-doped layer, a silver-containing metallic layer (9) and an interlayer (8) composed of a transparent conductive oxide, which is arranged between the semiconductor light emitting diode (15) and the metallic layer (9), characterized in that the metallic layer (9) and the interlayer (8) are arranged on that side of the semiconductor light emitting diode (15) which the p-doped second light emitting diode layer (4) faces, and in that at least one highly doped first semiconductor layer (7), the dopant concentration of which is greater than the dopant concentration of the second light emitting diode layer (4), is arranged between the second light emitting diode layer (4) and the interlayer (8).
Abstract:
The invention relates to a radiation-emitting semiconductor component with an improved radiation yield and to a method for producing the same. The semiconductor element has a multilayer structure (2) with an active layer (3) for generating the radiation within the multilayer structure (2) and a window (1) with a first and a second primary surface. The multilayer structure adjoins the first primary surface (5) of the window (1). At least one recess is formed in the window (1), starting from the second primary surface (6), for increasing the radiation yield. The recess preferably has a trapezoidal cross-section, which tapers towards the first primary surface (5) and can be produced, for example, by sawing into the window.
Abstract:
The invention relates to a method for heat treating a surface layer (4) on a semiconductor substrate (5). Laser pulses (2), generated by a laser (1), are delivered to the surface layer (4). Said method permits, in particular, ohmic contacts to III-V compound semiconductors to be produced.
Abstract:
In einer Ausführungsform umfasst der optoelektronische Halbleiterchip (1) eine Halbleiterschichtenfolge (2) mit einer aktiven Zone (23) zur Erzeugung einer Strahlung. Die Halbleiterschichtenfolge (2) basiert auf AlInGaP und/oder auf AlInGaAs. Ein Metallspiegel (3) für die Strahlung befindet sich an einer einer Lichtauskoppelseite (10) gegenüberliegenden Rückseite (12) der Halbleiterschichtenfolge (2). Eine Schutzmetallisierung (6) ist direkt an einer der Halbleiterschichtenfolge (2) abgewandten Seite des Metallspiegels (3) angebracht. Eine Haftvermittlungsschicht (7) befindet sich direkt an einer der Halbleiterschichtenfolge (2) zugewandten Seite des Metallspiegels (3). Die Haftvermittlungsschicht (7) ist eine Verkapselungsschicht für den Metallspiegel (3), sodass der Metallspiegel (3) zumindest an einem äußeren Rand von der Haftvermittlungsschicht (7) zusammen mit der Schutzmetallisierung (6) verkapselt ist.
Abstract:
In einer Ausführungsform umfasst der Leuchtdiodenchip (1) eine Halbleiterschichtenfolge (2), die auf InGaAlP basiert und zur Erzeugung von Licht eingerichtet ist. Eine Stromaufweitungsschicht (3) befindet sich direkt an der Halbleiterschichtenfolge (2) und basiert auf AlGaAs. Eine Verkapselungsschicht (4) ist stellenweise direkt auf der Stromaufweitungsschicht (3) und/oder auf der Halbleiterschichtenfolge (2) aufgebracht. Eine mittlere Dicke der Verkapselungsschicht (4) liegt zwischen 10 nm und 200 nm und eine Defektdichte beträgt höchstens 10/mm2. Auf der Verkapselungsschicht (4) ist eine Abdeckschicht (5) aufgebracht. An einer der Halbleiterschichtenfolge (2) abgewandten Seite der Stromaufweitungsschicht (3) befindet sich eine nichtmetallische Reflexionsschicht (6), die zur Totalreflexion von Strahlung eingerichtet ist. Die Reflexionsschicht (6) ist direkt oder indirekt von der Verkapselungsschicht (4) bedeckt. An einer der Stromaufweitungsschicht (3) abgewandten Seite der Reflexionsschicht (6) befindet sich zumindest eine Spiegelschicht und/oder Haftvermittlungsschicht (71, 72).