Abstract:
PROBLEM TO BE SOLVED: To provide an epitaxial substrate that achieves a peeling technology even in a arseniuretted-gallium-based material, has a sacrifice layer deposited on a wafer substrate, and has a group III-V semiconductor. SOLUTION: The epitaxial substrate has the sacrifice layer deposited on the wafer substrate, and the group III-V semiconductor. In this case, the band gap of the sacrifice layer is smaller than that of a peripheral substrate. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a means capable of separating a substrate even if the substrate is formed of the other material system. SOLUTION: At least one layer contains a group III-V porous semiconductor material. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
The substrate has a sacrificial layer (32) attached on a wafer substrate, where a band gap of the sacrificial layer is smaller than a band gap of a gallium arsenide. An epitaxial layer (33) has a band gap that is larger than the band gap of the sacrificial layer. The sacrificial layer contains germanium, gallium arsenide nitride, gallium arsenide antimonide and indium gallium arsenide. The sacrificial layer has a super lattice structure, which is arranged at a lattice structure of wafers. A lattice adjustment layer (35b) is located between the sacrificial layer and epitaxial layer. Independent claims are also included for the following: (1) an LED-thin film chip, which is manufactured by an epitaxial substrate; (2) a method for manufacturing an epitaxial substrate; and (3) a method for manufacturing a light emitting diode thin film chip.
Abstract:
The production of a light-emitting semiconductor component comprises forming a layer sequence (14) consisting of an active zone (17) emitting photons on a substrate, applying an insulating layer (24) on the layer sequence and forming one or more through-contacts (28) in the insulating layer, applying a reflection contact layer (40) on the insulating layer, applying a diffusion barrier layer (42) on the reflection contact layer, applying and structuring a solder contact layer (44) on the barrier layer, and cleaning the layer sequence with an etching solution.. The contact layer is tempered after applying the insulating layer and before applying the barrier layer to form an ohmic contact. The surface of the contact layer is purified with an etching solution after tempering. An Independent claim is also included for an alternative process for the production of a light-emitting semiconductor component.
Abstract:
A semiconductor layer grown on a substrate is applied to a carrier and separated from the substrate by irradiating with a pulsed laser beam. The thermal expansion coefficient of the carrier is matched to the radiation profile and pulse length of the laser beam pulse, and to the thermal expansion coefficient of the semiconductor layer and the thermal expansion coefficient of the substrate, to reduce strain between the substrate, semiconductor layer and carrier during manufacture. The semiconductor layer contains a nitride compound semiconductor. The carrier includes an iron-nickel-cobalt alloy. The substrate includes silicon, silicon carbide or aluminum oxide, especially sapphire.
Abstract:
The invention relates to a radiation-emitting semiconductor component comprising a layered structure (30) containing an active layer (32) which, when in operation, emits radiation of a spectral distribution (60), and electrical contacts (36,38,40) for impressing a current in the layered structure (30). Said component comprises an anti-reflection coating (44) which at least partially surrounds the active layer (32) and retains a short-wave part of the emitted radiation (60).
Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen von vereinzelten Halbleiterbauelementen (191, 192). Das Verfahren umfasst ein Bereitstellen eines Ausgangssubstrats (100), und ein Durchführen eines Ätzprozesses zum Ausbilden von Vertiefungen (160) an einer Seite (102) des Ausgangssubstrats (100). Die Vertiefungen (160) sind im Bereich der herzustellenden Halbleiterbauelemente (191, 192) angeordnet. Zwischen den Vertiefungen (160) vorliegende Wandungen (161) sind im Bereich von zum Durchtrennen des Ausgangssubstrats (100) vorgesehenen Trennbereichen (140) angeordnet. Das Verfahren umfasst des Weiteren ein Ausbilden einer metallischen Schicht (130) auf der Seite (102) des Ausgangssubstrats (100) mit den Vertiefungen (160) und Wandungen (161), und ein Durchführen eines weiteren Ätzprozesses zum Durchtrennen des Ausgangssubstrats (100) in den Trennbereichen (140) und Bilden der vereinzelten Halbleiterbauelemente (191, 192).
Abstract:
Verschiedene Ausführungsformen des Verfahrens zur Kontrolle einer zwischen einer Metallschicht (102) und einer Halbleiterschicht (100) ausgebildeten Grenzfläche (106) weisen die folgenden Schritte auf: – Die Grenzfläche (106) wird mit Infrarotstrahlung (302) bestrahlt. – Eine an der Grenzfläche (106) reflektierte Strahlung (304) wird erfasst. – Ein erfasstes Reflexionsbild wird mit einem erwarteten Reflexionsbild verglichen.
Abstract:
An optoelectronic semiconductor component includes a semiconductor body connected to a main area of a carrier body by a solder layer, wherein sidewalls of the semiconductor body are provided with a dielectric layer, and a mirror layer applied to the dielectric layer.