Abstract:
A method is proposed for manufacturing an integrated electronic device (400) of the SOI type. The method includes the steps of providing an SOI substrate (105) including a semiconductor substrate (110), an insulating layer (115) on the semiconductor substrate, and a semiconductor starting layer (112) on the insulating layer, performing an epitaxial growing process, the epitaxial growing process being applied to the starting layer to obtain a thicker semiconductor active layer (142) embedding the starting layer on the insulating layer, forming at least one insulating trench (405) extending from an exposed surface of the active layer to the insulating layer, the at least one insulating trench partitioning the active layer into insulated regions (415) and at least one further insulated region (425), and integrating components (420) of the device in the insulated regions; in the solution according to an embodiment of the invention, the method further includes, before the step of performing an epitaxial growing process, forming at least one contact trench (120) extending from an exposed surface of the starting layer to the substrate in correspondence to each further insulated region, wherein each contact trench clears a corresponding portion (130b,130s) of the starting layer, of the insulating layer and of the substrate, the epitaxial growing being further applied to the cleared portions thereby at least partially filling each contact trench with semiconductor material gettering impurities of the active layer, the gettered impurities in the at least one further insulated region being segregated from the insulated regions.
Abstract:
A process for the fabrication of an integrated device in a semiconductor chip envisages: forming a semiconductor layer (5') partially suspended above a semiconductor substrate (2) and constrained to the substrate (2) by temporary anchorages (10, 15'); dividing the layer (5') into a plurality of portions (13) laterally separated from one another; and removing the temporary anchorages (10, 15'; 38), in order to free the portions (13).
Abstract:
The method is based on the use of a silicon carbide mask for removing a sacrificial region. In case of manufacture of integrated semiconductor material structures, the following steps are performed: forming a sacrificial region (6) of silicon oxide on a substrate (1) of semiconductor material; growing a pseudo-epitaxial layer (8); forming an electronic circuit (10-13, 18); depositing a silicon carbide layer (21); defining photolithographycally the silicon carbon layer so as to form an etching mask (23) containing the topography of a microstructure (27) to be formed; with the etching mask (23), forming trenches (25) in the pseudo-epitaxial layer (8) as far as the sacrificial region (6) so as to laterally define the microstructure; and removing the sacrificial region (6) through the trenches (25).
Abstract:
The angular speed sensor comprises a pair of mobile masses (2a, 2b) which are formed in the epitaxial layer (37) and are anchored to one another and to the remainder of the device by anchorage elements; the mobile masses are symmetrical with one another, and have mobile excitation electrodes (6a) which are intercalated with respective fixed excitation electrodes (7a 1 , 7a 2 ) and mobile detection electrodes (6b) which are intercalated with fixed detection electrodes (7b 1 , 7b 2 ). The mobile and fixed excitation electrodes extend in a first direction and the mobile and fixed detection electrodes extend in a second direction which is perpendicular to the first direction and is disposed on a single plane parallel to the surface of the device.
Abstract:
A method is proposed for manufacturing an integrated electronic device (500). The method includes the steps of providing an SOI substrate (505) including a semiconductor substrate (510), an insulating layer (515) on the semiconductor substrate, and a semiconductor starting layer (512) on the insulating layer, the substrate and the starting layer being of a first type of conductivity, performing an epitaxial growing process, the epitaxial growing process being applied to the starting layer to obtain a thicker semiconductor active layer (542) of the first type of conductivity embedding the starting layer on the insulating layer, forming at least one insulating trench (558) extending from an exposed surface of the active layer to the insulating layer, the at least one insulating trench partitioning the active layer into insulated regions (560) and at least one further insulated region (561), and integrating components (580) of the device in the insulated regions, the components being insulated from the substrate by the insulating layer; in the solution according to an embodiment of the invention, the method further includes, before the step of performing an epitaxial growing process, forming at least one contact trench (520) extending from an exposed surface of the starting layer to the substrate in correspondence to each further insulated region, each contact trench clearing a corresponding portion (530b,530s) of the starting layer, of the insulating layer and of the substrate, implanting dopants of a second type of conductivity different from the first type into at least part of the cleared portions, wherein the epitaxial growing is further applied to the cleared portions thereby at least partially filling each contact trench with semiconductor material, the dopants diffusing during the epitaxial growing to form an insulating region (545) of the second type of conductivity enclosing the at least one contact trench of each further insulated region, and integrating further components (580) of the device in each further insulated region, the further components being insulated from the substrate by a junction formed by the corresponding insulating region with the active layer and/or the substrate when reverse-biased.
Abstract:
A method of producing a waveguide (20) with a rounded core integrated in a substrate (1), including phases of:
forming a lower cladding (3) of the guide supported by the substrate; etching said lower cladding to define a concave region delimited by a curved surface (11) and extending along the axis of propagation; providing on a free surface (12) of said lower cladding a layer (13) of doped material filling the concave region (4) to form a first portion (17) of the core in contact with the curved surface; etching the layer of doped material so that only sufficient volume of doped material for the waveguide core remains; heating the doped material so that it forms a rounded core due to surface tension and the concave region of the cladding.
Abstract:
To increase the sensitivity of the sensor, the movable mass (40) forming the seismic mass is formed starting from the epitaxial layer (13) and is covered by a weighting region of tungsten (26c) which has high density. To manufacture it, buried conductive regions (2) are formed in the substrate (1); then, at the same time, a sacrificial region is formed in the zone where the movable mass is to be formed and oxide insulating regions (9a-9d) are formed on the buried conductive regions (2) so as to cover them partially; the epitaxial layer (13) is then grown, using a nucleus region; a tungsten layer (26) is deposited and defined and, using a silicon carbide layer (31) as mask, the suspended structure (40) is defined; finally the sacrificial region is removed, forming an air gap (38).