基于HRNet的遥感影像地物提取多尺度强融合语义分割方法

    公开(公告)号:CN116486075A

    公开(公告)日:2023-07-25

    申请号:CN202310337060.1

    申请日:2023-03-31

    Applicant: 重庆大学

    Abstract: 本发明公开了基于HRNet的遥感影像地物提取多尺度强融合语义分割方法,首先获取遥感数据,对数据进行数据集划分,形成地物要素提取样本数据集。基于地物要素提取样本数据集,构建融合三重注意力机制的多尺度强融合语义分割网络MT‑HRNet,基于构建的MT‑HRNet语义分割模型,在训练集上进行训练,优化模型参数,获得初步地物要素提取结果。基于初步地物要素提取结果和遥感图像真实标签,计算分割损失。该分割损失会指导MT‑HRNet特征提取网络进行充分的特征提取,提高分割精度。直至MTC‑HRNet模型收敛。该方法将HRNet网络用于遥感影像语义分割,提高对遥感影像的特征提取提取能力,使地物要素提取结果更准确。

    基于CLA-BLSA模型的短时交通流预测方法

    公开(公告)号:CN116453335A

    公开(公告)日:2023-07-18

    申请号:CN202310337303.1

    申请日:2023-03-31

    Applicant: 重庆大学

    Abstract: 本发明公开了基于CLA‑BLSA模型的短时交通流预测方法,本方法提出了一种融合了Conv‑LSTM、Bi‑LSTM和注意力机制的CLA‑BLSA模型,充分挖掘交通流的时空特性和复杂非线性特征,提升交通流预测的精度。该模型包含时空特征提取模块、交通流量日期性特征提取模块和交通流量周期性特征提取模块三个模块。CLA模块是带有注意力机制的Conv‑LSTM模块,该模块用于提取交通流的时空特征。设计两个BLSA模块用于捕获交通流每日和每周的周期变化特性,BLSA模块由基于自注意力机制的Bi‑LSTM模块构成。最后采用Lookahead优化算法通过指定内部循环优化器,更新快速权重、慢速权重的方式对模型进行优化。本发明通过引入注意力机制的Conv‑LSTM模块捕获交通流的时空特性,与其他现有的预测方法对比,本发明具有更优越的预测性能。

    一种基于PSPNet网络的飞机起降跑道识别方法

    公开(公告)号:CN113052106B

    公开(公告)日:2022-11-04

    申请号:CN202110353929.2

    申请日:2021-04-01

    Applicant: 重庆大学

    Abstract: 本发明公开了一种基于PSPNet网络的飞机起降跑道识别方法,该方法采用残差网络ResNet与轻量级深层神经网络MobileNetV2作为主干特征提取网络加强特征提取,同时将原有的四层金字塔池化模块调整为五层,每个层级的尺度大小分别为9×9,6×6,3×3,2×2,1×1,利用有限的自制飞机起降地形图像进行训练,将飞机起降地形图像中的飞机起降跑道标识并进行提取。该方法将ResNet和MobileNetV2进行有效结合,相比现有技术提高了飞机起降跑道的检测精度。

    一种用于智能扫雪机器人的障碍物检测与识别方法

    公开(公告)号:CN112540368B

    公开(公告)日:2023-07-14

    申请号:CN202011363678.8

    申请日:2020-11-27

    Applicant: 重庆大学

    Abstract: 本发明公开了一种基于智能扫雪机器人的障碍物检测与识别方法,其包括:1)在扫雪机器人前端设置超声波传感器检测距离前方障碍物的距离信息,在扫雪机器人前部和后部设置雷达传感器检测是否有生物突然靠近;2)对各个超声波传感器和各个雷达传感器检测到的信号进行处理,计算扫雪机器人的前进距离;3)利用一定时间内超声波测距的变化比和扫雪机器人前进距离的变化的乘积、雷达传感器信号的变化及积雪程度描述量三个条件来共同判断作业道路积雪程度,检测障碍物的距离变化,并识别其为一般障碍物或生物障碍物。本发明能在扫雪机器人自主作业中判断作业道路积雪程度,快速有效检测障碍物,并识别其为一般障碍物或生物障碍物。

    一种基于智能扫雪机器人的障碍物检测与识别方法

    公开(公告)号:CN112540368A

    公开(公告)日:2021-03-23

    申请号:CN202011363678.8

    申请日:2020-11-27

    Applicant: 重庆大学

    Abstract: 本发明公开了一种基于智能扫雪机器人的障碍物检测与识别方法,其包括:1)在扫雪机器人前端设置超声波传感器检测距离前方障碍物的距离信息,在扫雪机器人前部和后部设置雷达传感器检测是否有生物突然靠近;2)对各个超声波传感器和各个雷达传感器检测到的信号进行处理,计算扫雪机器人的前进距离;3)利用一定时间内超声波测距的变化比和扫雪机器人前进距离的变化的乘积、雷达传感器信号的变化及积雪程度描述量三个条件来共同判断作业道路积雪程度,检测障碍物的距离变化,并识别其为一般障碍物或生物障碍物。本发明能在扫雪机器人自主作业中判断作业道路积雪程度,快速有效检测障碍物,并识别其为一般障碍物或生物障碍物。

Patent Agency Ranking