Abstract:
A method for structuring a substrate and a structured substrate are disclosed. In an embodiment a method includes providing a substrate with a first main surface and a second main surface, wherein the substrate is fixed to a carrier arrangement at the second main surface, performing a photolithography step at the first main surface of the substrate to mark a plurality of sites at the first main surface, the plurality of sites corresponding to future perforation structures and future kerf regions for a plurality of future individual semiconductor chips to be obtained from the substrate, and plasma etching the substrate at the plurality of sites until the carrier arrangement is reached, thus creating the perforation structures within the plurality of individual semiconductor chips and simultaneously separating the individual semiconductor chips along the kerf regions.
Abstract:
A method for producing a component, and a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, is provided, the component including at least one patterned material region, and in a first step the patterned material region is produced in that microparticles of a first material are embedded in a matrix of a second material, and in a second step the patterned material region is rendered porous by etching using a dry etching method or a gas-phase etching method.
Abstract:
The invention is a method for fabricating molecular filters which can separate objects approximately 1-5 nm in range, where the filtration size is controlled by using thin films of materials and technologies to form a filtration channel or pore in a middle thin film layer in a multilayered structure. Lithography is used to define two offset arrays of blind holes into the opposing sides of a multi-layer membrane. The blind holes extend across a thin central filtration layer. A selective etch is used to attack the filtration layer to form a communicating channel between the two holes. The only connection between one side of the filter and the other is through the channel in the filter layer, whose thickness, d, determines the largest size object which can traverse the filter.
Abstract:
Microfabricated filters utilizing a bulk substrate structure and a thin film structure and a method for constructing such filters. The pores of the filters are defined by spaces between the bulk substrate structure and the thin film structure and are of substantially uniform width, length and distribution. The width of the pores is defined by the thickness of a sacrificial layer and therefore may be smaller than the limit of resolution obtainable with photolithography. The filters provide enhanced mechanical strength, chemical inertness, biological compatibility, and throughput. The filters are constructed using relatively simple fabrication techniques. Also, microfabricated containment wells and capsules constructed with such filters for the immunological isolation of cell transplants and a method for constructing such containment wells and capsules. The pores of the wells and capsules are large enough to let a desired biologically-active molecular product through, while blocking the passage of all larger immunological molecules. The containment wells and capsules provide enhanced biological compatibility and useful life.
Abstract:
The MEMS type semiconductor gas detection element of the invention is a MEMS type semiconductor gas detection element 1 having a MEMS structure, for detecting hydrogen gas, comprising: a substrate 2; a gas sensitive portion 3 mainly made of a metal oxide semiconductor and provided to the substrate 2; a heating portion 4 for heating the gas sensitive portion 3; an inactive film 5 having hydrogen-permselective and formed outside the gas sensitive portion 3; a protective film 6 formed outside the inactive film 5, for suppressing deterioration of the gas sensitive portion 3.
Abstract:
In embodiments, a package assembly may include an application-specific integrated circuit (ASIC) and a microelectromechanical system (MEMS) having an active side and an inactive side. In embodiments, the MEMS may be coupled directly to the ASIC by way of one or more interconnects. The MEMS, ASIC, and one or more interconnects may define or form a cavity such that the active portion of the MEMS is within the cavity. In some embodiments, the package assembly may include a plurality of MEMS coupled directly to the ASIC by way of a plurality of one or more interconnects. Other embodiments may be described and/or claimed.
Abstract:
A process for manufacturing a micromechanical structure envisages: forming a buried cavity within a body of semiconductor material, separated from a top surface of the body by a first surface layer; and forming an access duct for fluid communication between the buried cavity and an external environment. The method envisages: forming an etching mask on the top surface at a first access area; forming a second surface layer on the top surface and on the etching mask; carrying out an etch such as to remove, in a position corresponding to the first access area, a portion of the second surface layer, and an underlying portion of the first surface layer not covered by the etching mask until the buried cavity is reached, thus forming both the first access duct and a filter element, set between the first access duct and the same buried cavity.
Abstract:
A method for producing a component, and a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, is provided, the component including at least one patterned material region, and in a first step the patterned material region is produced in that microparticles of a first material are embedded in a matrix of a second material, and in a second step the patterned material region is rendered porous by etching using a dry etching method or a gas-phase etching method.
Abstract:
An optical component or an analytical platform includes a substrate, an array of microstructures on the substrate and microchannels formed by side walls of adjacent microstructures, a width of the microchannels varies as a function of distance to the substrate, the width continuously decreasing with increasing distance from the substrate within at least one distance-interval. In a method for producing such a component or such a platform a substrate with an array of surface microstructures is coated in a vapor treatment in such a way that shadowing effects of the coating mechanism narrow at least partially a width of the upper parts of side walls of the microstructures thereby forming at least partially embedded microchannels.