Abstract:
A method for encapsulating an MEMS structure in a stack structure includes providing a functional wafer structure including at least partly the MEMS structure. The method includes arranging the functional wafer structure and a glass wafer in the stack structure and along a stacking direction and is performed such that a cavity, in which at least part of the MEMS structure is arranged, is closed on one side along the stacking direction by the glass wafer and such that a spacing structure is arranged between the part of the MEMS structure and the glass wafer in the stack structure to provide a spacing between the part of the MEMS structure and the glass wafer along the stacking direction, such that the spacing structure encloses part of the cavity.
Abstract:
According to one embodiment, an electronic device includes a base region, an element portion located on the base region, the element portion including a movable portion, and a protective film overlying the element portion and forming a cavity on an inner side of the protective film. The protective film includes a first protective layer and a second protective layer located on the first protective layer. A hole extends in a direction parallel to a main surface of the base region, and the second protective layer covers the hole.
Abstract:
In accordance with an embodiment a microelectromechanical system (MEMS) device including a substrate comprising a vertically extending through hole and a horizontally extending membrane structure covering the through hole, where the membrane structure comprises a plurality of upright nanostructures for providing a liquid repellent membrane surface. In other embodiments, certain methods are used for fabricating MEMS devices.
Abstract:
A method for manufacturing a micromechanical device includes providing a silicon substrate having a front side and a rear side, where a first normal of the front side deviates by a first angle from the direction of the silicon substrate; forming in the front side first and second trenches that are spaced apart from and essentially parallel to each other, with the first and second trenches extending along a direction of the deviation; forming on the front side a first etching mask that covers the front side except for a first opening area between the first and second trenches; and anisotropically etching the front side using the etching mask, thereby forming in the opening area an oblique surface having a second angle to the first normal, which approximately corresponds to the first angle.
Abstract:
A method for the production of a planar structure is disclosed. The method comprises producing on a substrate a plurality of structures of substantially equal height, and there being a space in between the plurality of structures. The method further comprises providing a fill layer of electromagnetic radiation curable material substantially filling the space between the structures. The method further comprises illuminating a portion of the fill layer with electromagnetic radiation, hereby producing a exposed portion and an unexposed portion, the portions being separated by an interface substantially parallel with the first main surface of the substrate. The method further comprises removing the portion above the interface.
Abstract:
A method for the production of a planar structure is disclosed. The method comprises producing on a substrate a plurality of structures of substantially equal height, and there being a space in between the plurality of structures. The method further comprises providing a fill layer of electromagnetic radiation curable material substantially filling the space between the structures. The method further comprises illuminating a portion of the fill layer with electromagnetic radiation, hereby producing a exposed portion and an unexposed portion, the portions being separated by an interface substantially parallel with the first main surface of the substrate. The method further comprises removing the portion above the interface.
Abstract:
According to one embodiment, an electronic device includes a base region, an element portion located on the base region, the element portion including a movable portion, and a protective film overlying the element portion and forming a cavity on an inner side of the protective film. The protective film includes a first protective layer and a second protective layer located on the first protective layer. A hole extends in a direction parallel to a main surface of the base region, and the second protective layer covers the hole.
Abstract:
A method for manufacturing a micromechanical component and a micromechanical component. The micromechanical component includes a sensor substrate and a cap situated thereon. For creating the cap, a plurality of openings is introduced into a cap substrate in a delimited area on the surface of the front side in the form of microperforations. The openings end in the cap substrate, i.e. they do not go all the way through the cap substrate and are therefore shallow. The cap substrate is then placed on the sensor substrate, whereby the front side of the cap substrate including the plurality of openings is directed toward the sensor substrate. A portion of the cap substrate is removed from its back side by back-thinning using a grinding process or another semiconductor process. The removal of the cap substrate material from the back side creates access to the openings.
Abstract:
MEMS devices (40) using etched cavities (42) are desirably formed using multiple etching steps. Preliminary cavities (20) formed by locally anisotropic etching to nearly the final depth have irregular (46) sidewalls (44) and steep and/or inconsistent sidewall (44) to bottom (54) intersection angles (48). This leads to less than desired cavity diaphragm (26) burst strengths. Final cavities (42) with smooth sidewalls (50), smaller and consistent sidewall (50) to bottom (54) intersection angles (58), and having more than doubled cavity diaphragm (26) burst strengths are obtained by treating the preliminary cavities (20) with TMAH etchant, preferably relatively dilute TMAH etchant. In a preferred embodiment, a cleaning step is performed between the etching step and the TMAH treatment step to remove any anisotropic etching by-products present on the preliminary cavities' (20) initial sidewalls (44). The multi-step cavity etching procedure is especially useful for forming robust MEMS pressure sensors, but is applicable to any type of MEMS device.
Abstract:
System and method for filling vias in integrated circuits A preferred embodiment comprises forming a spacer layer on a substrate, forming a via with walls and a bottom in the spacer layer, depositing a conformal conductive layer on the spacer layer and on the walls and bottom of the via, spinning-on a photo-definable material on the conductive layer, forming a fill layer on the conductive layer and filling the via, exposing portions of the fill layer to an exposing light using a photomask, developing the fill layer to remove select portions of the fill layer and leave a portion of the fill layer filling the via, and removing the spacer layer. The use of a spin-on photo-definable material increases the material's filling and planarizing capabilities, while enabling a reduction in the number of process steps, which may reduce the likelihood of manufacturing defects, thereby increasing manufacturing yield.