Abstract:
Provided are a metal PCB, a headlight module having the metal PCB applied thereto, and a method for assembling the headlight module, wherein the metal PCB has a base made of a metal material and configured as a thin plate, or the base has a predetermined thickness and is bent in a desired direction through a bending groove formed on the rear surface thereof, and the base has a plurality of chip mounting portions integrated thereon such that one or more LED chips are mounted thereon, the chip mounting portions being spaced at a predetermined interval and having at least two parts of incision surfaces formed on one side of the base such that the chip mounting portions are inclined and installed to have a predetermined angle with regard to the base.
Abstract:
The present invention relates to a selectively conductive toy building element, comprising: a body adapted for releasable engagement to at least one other toy building element body or to a corresponding baseplate, the body including at least one conductive portion having at least one contact area adapted to generate pressure on a conductive portion or contact area of an adjacent toy building element body, in such a way that ensures electrical conduction between said toy building elements in a desired location and direction.
Abstract:
A substrate for mounting an electronic component includes a base material including insulating resin, a first conductor layer formed on first surface of the material, a second conductor layer formed on second surface of the material, and a metal block inserted into a hole penetrating through the first conductor, material and second conductor such that the metal block is fitted in the hole. The material has a bent portion in contact with the metal block in the hole such that the bent portion is bending toward the second conductor, the metal block has surface on first conductor side such that the surface has an outer peripheral portion having a curved-surface shape, and the hole has a first fitting inlet on the first conductor layer side and a second fitting inlet on second conductor side and that the metal block is positioned in contact with the second fitting inlet.
Abstract:
A straight middle LED module having a certain length and positioned at a middle portion; side LED modules which are provided at both sides of the middle LED module at a regular interval along a longitudinal direction; a middle connection portion at which the side LED modules and the middle LED module are connected and integrally formed in order for the side LED modules to be bent; and a horizontal connection portion to which a lower side of the middle LED module is connected at a regular interval along a horizontal direction, and the middle connection portion has grooves alternately formed at both sides and has a width narrower than the width of the side LED module.
Abstract:
A method is for making a non-planar three-dimensional (3D) multilayered circuit board. The method may include forming a stacked arrangement including at least one pair of liquid crystal polymer (LCP) layers with a bonding layer therebetween. The stacked arrangement may further include at least one electrically conductive pattern layer on at least one of the LCP layers. The method may further include heating and applying pressure to the stacked arrangement to shape the stacked arrangement into a non-planar 3D shape and concurrently causing the bonding layer to bond together the adjacent LCP layers of the stacked arrangement to thereby form the non-planar 3D multi-layered circuit board.
Abstract:
In a connection structure of an electronic component and a wired circuit board, the electronic component includes a plurality of external terminals. The wired circuit board includes a metal supporting board, an insulating base layer formed on the metal supporting board, and a conductive pattern formed on the insulating base layer. The conductive pattern includes a plurality of terminal portions for connection with the plurality of external terminals. The electronic component and the wired circuit board are disposed such that the plurality of external terminals and the plurality of terminal portions face each other. The wired circuit board is bent such that the conductive pattern is warped, and by the reaction force of the warping, the terminal portions and the external terminals are abutted, and the electronic component and the wired circuit board are electrically connected.
Abstract:
A patch panel (100) for use with infrastructure management systems that utilizes a plurality of cables interconnected to end-user devices and work area outlets, and integrated circuits to monitor the status of these end-user devices and outlets includes a pair of circuit boards. A plurality of connective jacks (31) are mounted on the first (36) of the two circuit boards, and are interconnected to other network devices. Wires from the jacks extend to and connect with network devices and the first circuit board has a plurality of first integrated circuits (45) mounted thereon which monitor the status of the network devices connected to the jacks. The second circuit board (49) is spaced apart from the first circuit board and it includes a plurality of second integrated circuits (52) that convey the status information obtained from the network work area outlets on the network to network devices, such as switches and scanners of the network (104).
Abstract:
A method of manufacturing a concave connector substrate includes: a step of preparing a guide substrate having a guide/holding region that guides a plate-shaped connector to a connection position and a cut portion; a step of arranging and aligning two wiring substrates, each having wiring lines and through hole connection portions that are electrically connected to the wiring lines, with both surfaces of the guide substrate, and applying an adhesive to a predetermined region of the guide substrate to bond the wiring substrates to the guide substrate; a step of bending a portion of the wiring substrate toward the inside of the cut portion of the guide substrate and bringing the wiring lines disposed in the bent portion into pressure contact with the inside of the cut portion; and a step of removing a section inside the cut portion to form the guide/holding region.
Abstract:
A method of forming the wiring board. The wiring board includes a first substrate, and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate, and at least one via formed in at least one of the first substrate or the second substrate. A thickness of a portion of the base substrate that is sandwiched between the first substrate and the second substrate is greater than a thickness of a portion of the base substrate that is not sandwiched between the first substrate and the second substrate.
Abstract:
The invention relates to a circuit board having a light source for illumination purposes, having at least one LED electrically conductively connected to conductors of the circuit board, and the light thereof being converted into directed light by means of at least one mirror disposed on the circuit board, characterized in that the mirror is designed as a reflective coating printed onto the circuit board.