Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1−z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, (B)或由通式(2)表示的羧酸(B))的化合物(A-1-z))O 3 [其中0.9
Abstract:
A coating apparatus including a coating part which coats a liquid material containing a metal on a substrate, a coating-film forming part which subjects the liquid material coated on the substrate to a predetermined treatment to form a coating film, and a removing part which removes a peripheral portion of the coating material formed along the outer periphery of the substrate.
Abstract:
A coating head is constructed of a solvent feed mechanism connected to a forward side in a direction of movement of a coating solution feed mechanism, and a gas jet mechanism connected to a rearward side in the direction of movement. While moving the coating head relative to a substrate, a solvent is supplied onto the substrate from the solvent feed mechanism, then a coating solution is supplied onto a film of the solvent from the coating solution feed mechanism, and finally a gas is jetted to an uneven surface of the coating solution from the gas jet mechanism to smooth a thin film surface of the coating solution.
Abstract:
In accordance with some embodiments described herein, a method for transferring a substrate is provided. The method includes loading one or more substrates into a respective mobile chamber of one or more mobile chambers. The mobile chambers are movable on a first rail positioned adjacent to two or more process modules. Each mobile chamber is configured to maintain a specified gas condition. The respective mobile chamber is moved along the first rail. The respective mobile chamber is docked to a respective process module of the two or more process modules. At least one of the one or more substrates is conveyed from the respective mobile chamber to the respective process module.
Abstract:
With regard to an Al—Cr—Zr based alloy having annealing temper, a high temperature strength at 180 to 200 degrees C. is ensured. An aluminum alloy for a plain bearing having improved fatigue resistance is to be provided. An aluminum alloy for a plain bearing solving the problems has a composition of 3 to 7 mass % Mg, 0.1 to 0.3 mass % Cr, and 0.1 to 0.3 mass % Zr, with the balance being Al and inevitable impurities. A principal structure of the aluminum alloy consist of an Al matrix containing solute Mg, minute particles of Cr, and Zr.
Abstract:
This invention discloses apparatus for processing one or more of a Lens Precursor, a Lens Precursor Form and an ophthalmic Lens. The apparatus provides for vapor phase processing of the subject Lens Precursor, a Lens Precursor Form and an ophthalmic Lens.
Abstract:
In accordance with some embodiments described herein, a method for transferring a substrate is provided. The method includes loading one or more substrates into a respective mobile chamber of one or more mobile chambers. The mobile chambers are movable on a first rail positioned adjacent to two or more process modules. Each mobile chamber is configured to maintain a specified gas condition. The respective mobile chamber is moved along the first rail. The respective mobile chamber is docked to a respective process module of the two or more process modules. At least one of the one or more substrates is conveyed from the respective mobile chamber to the respective process module.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.