Abstract:
Control of the angle-of-incidence of a beam of electromagnetic radiation provided by a horizontally oriented arc-lamp in ellipsometer, polarimeter, spectrophotometer, reflectometer, or the like systems.
Abstract:
Provided is a tunable filter including: a polarization splitter that splits input light into two linearly polarized light rays of mutually orthogonal vibration directions; a wavelength dispersion spectroscopic element that splits the two linearly polarized light rays split by the polarization splitter, into two spectral images having spatial spread in one direction, the two spectral images corresponding to the two linearly polarized light rays; and a reflective spatial modulator device that modulates and reflects linearly polarized light in each wavelength region for the two spectral images independently from each other, where modulated light reflected at the reflective spatial modulator device reenters the wavelength dispersion spectroscopic element and the polarization splitter, thereby splitting and outputting the modulated light, as output light in a wavelength region modulated by the reflective spatial modulator device and output light in a wavelength region not modulated, and input light and reentered light to the polarization splitter and input light and reentered light to the wavelength dispersion spectroscopic element are parallel light fluxes.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
Performing high-resolution determination of the relative shift of the spectral properties of a biosensor. The shift in the resonance peak of the biosensor is indicative of the amount of material bound to the surface of the biosensor. A preferred biosensor is a Guided Mode Resonant Filter Biosensor (GMRFB). In one aspect of the invention, curve fitting is used to determine the relative location of the spectrum of the unexposed biosensor with respect to those spectra that are altered (e.g., shifted) by the presence of materials bound to the surface of the biosensor. In an alternative embodiment, the cross correlation function is used to detect spectral peak offsets between a reference spectrum and a spectrum measured from an exposed biosensor. In yet another alternative, maximal likelihood estimation techniques are used to determine the spectral shift or offs.
Abstract:
Image measurement values of a measurement object, in particular a printed sheet, measured by means of a photoelectric image measuring unit operating on the basis of pixels are corrected with respect to at least one influencing variable which influences the measurement result with a view to at least partially eliminating the effect of this influencing variable on the measuring process. The image measurement values measured by the image measuring unit are converted by correction parameters of a parameter-based correction model into corrected image measurement values which no longer contain the influencing variable affecting the measuring process. The correction parameters used for the parameter-based correction model are automatically calculated using reference measurement values measured at reference measurements points on preferably the same measurement object by means of a reference measuring unit and the image measuring unit. In particular, image measurement values measured without polarization filters are converted into polarization filter image measurement values by means of this method. Influences induced by print medium, fluorescence effects and the influences of non-standard measuring geometries are also corrected.
Abstract:
Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy are described within this application. One embodiment includes providing incident light comprising at least one spectral component having low coherence, wherein the incident light is to be illuminated on a target object in vivo. An intensity of one or more of at least one spectral component and at least one angular component of backscattering angle of backscattered light is recorded, wherein the backscattered light is to be backscattered from illumination of the incident light on the target object and wherein the backscattering angle is an angle between incident light propagation direction and backscattered light propagation direction. The intensity of the at least one spectral component and the at least one backscattering angle of backscattered light is analyzed, to obtain one or more optical markers of the backscattered light, toward evaluating said properties.
Abstract:
A Raman spectroscopy system has a filter arrangement comprising two filters (16, 26A) in series, to reject light of the illuminating wavenumber from the scattered light of interest. The filters are tilted and have different characteristics for light of first and second different polarisation states. To counter this, the filters are arranged so that their respective effects on the respective polarisation states at least partially cancel each other out. This may for example be done by arranging their tilt axes (32, 34) orthogonally to each other.
Abstract:
Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
To achieve an apparatus capable of measuring a light absorption coefficient f a sample with high sensitivity. A ring down spectroscope uses a wavelength-variable femtosecond soliton pulse light source 1. Pulse light is input to a loop optical fiber 6 through a first light waveguide 4 and a wavelength selective switch 5. Ring down pulse light is input to a homodyne detector through the wavelength selective switch 5. On the other hand, pulse light propagating in the first light waveguide 4 is split and input to light waveguides constituting a second light waveguide 20 through an optical directional coupler 8 and a first optical switching element 12. The pulse light propagating in the second light waveguide 20 is input to the homodyne detector as reference light and used for synchronous detection. The plural light waveguides constituting the second light waveguide 20 differ in optical length in accordance with the length of the optical fiber 6, and can slightly change the optical length.