Scanning monochromator and concave reflecting grating employed therein
    92.
    发明授权
    Scanning monochromator and concave reflecting grating employed therein 失效
    其中采用扫描单色仪和凹面反射光栅

    公开(公告)号:US4027975A

    公开(公告)日:1977-06-07

    申请号:US580920

    申请日:1975-05-27

    CPC classification number: G02B5/1861 G01J3/06 G01J3/20

    Abstract: A scanning monochromator or spectrometer having a reflecting grating whose curvature in the meridian plane is equal to the curvature of a circle upon which the source, detecting means and grating lie and whose lines are ruled with a frequency which varies systematically and directly in proportion to the distance of the lines from a point of origin on the track as determined by the geometry of the equipment, and gratings therefor.

    Abstract translation: 具有反射光栅的扫描单色仪或光谱仪,其在子午线平面中的曲率等于源,检测装置和光栅所在的圆弧的曲率,并且其线被划分为频率,该频率系统地和直接地与 由设备的几何形状确定的轨道上的原点距离以及光栅的距离。

    OPTOMECHANICALLY COMPENSATED SPECTROMETER

    公开(公告)号:US20170322077A1

    公开(公告)日:2017-11-09

    申请号:US15262061

    申请日:2016-09-12

    Abstract: A spectrometer for examining the spectrum of an optical emission source may include: an optical base body, a light entry aperture connected to the optical base body to couple light into the spectrometer, at least one dispersion element to receive the light as a beam of rays and generate a spectrum, and at least one detector for measuring the generated spectrum. A light path may run from the light entry aperture to the detector. A mirror group with at least two mirrors may be provided in a section of the light path between the light entry aperture and the at least one detector, in which the beam does not run parallel, which may compensate for temperature effects. In the mirror group, at least one mirror or the entire mirror group may be moveable relative to the optical base body and may be coupled to a temperature-controlled drive.

    Apparatus, method and system for spectrometry with a displaceable waveguide structure
    97.
    发明授权
    Apparatus, method and system for spectrometry with a displaceable waveguide structure 有权
    具有位移波导结构的光谱仪的装置,方法和系统

    公开(公告)号:US09500827B2

    公开(公告)日:2016-11-22

    申请号:US14317132

    申请日:2014-06-27

    Abstract: Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.

    Abstract translation: 单片光子集成电路(PIC)提供光谱功能的技术和机制。 在一个实施例中,PIC包括光子器件,第一波导和第二波导,其中第一波导和第二波导中的一个包括相对于PIC的衬底自由移动的释放部分。 在用于评估被测材料的计量循环期间,控制逻辑操作致动器以相对于光子器件连续配置释放部分的多个位置。 在另一个实施例中,来自第一波导的光在计量周期期间由光子器件的光栅进行各种衍射,其中光的一部分被引导到第二波导中。 对于释放部分的不同位置,可以连续地检测衍射到第二波导中的不同波长的光,以确定波长范围上的光谱测量。

    APPARATUS, METHOD AND SYSTEM FOR SPECTROMETRY WITH A DISPLACEABLE WAVEGUIDE STRUCTURE
    98.
    发明申请
    APPARATUS, METHOD AND SYSTEM FOR SPECTROMETRY WITH A DISPLACEABLE WAVEGUIDE STRUCTURE 有权
    用于具有可摆放波导结构的光谱测量的装置,方法和系统

    公开(公告)号:US20150377705A1

    公开(公告)日:2015-12-31

    申请号:US14317132

    申请日:2014-06-27

    Abstract: Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.

    Abstract translation: 单片光子集成电路(PIC)提供光谱功能的技术和机制。 在一个实施例中,PIC包括光子器件,第一波导和第二波导,其中第一波导和第二波导中的一个包括相对于PIC的衬底自由移动的释放部分。 在用于评估被测材料的计量循环期间,控制逻辑操作致动器以相对于光子器件连续配置释放部分的多个位置。 在另一个实施例中,来自第一波导的光在计量周期期间由光子器件的光栅进行各种衍射,其中光的一部分被引导到第二波导中。 对于释放部分的不同位置,可以连续地检测衍射到第二波导中的不同波长的光,以确定波长范围上的光谱测量。

    HIGH EFFICIENCY MONO-ORDER CONCAVE DIFFRACTION GRATING
    99.
    发明申请
    HIGH EFFICIENCY MONO-ORDER CONCAVE DIFFRACTION GRATING 有权
    高效单声道折射衍射

    公开(公告)号:US20140233891A1

    公开(公告)日:2014-08-21

    申请号:US14350140

    申请日:2012-10-05

    Abstract: A concave diffraction grating for integrated optics is constructed by replacing the reflective metallic part by either multiple thin elements of metal or multiple elements of dielectric material, each partially reflecting the light, and arranged on elliptical fashion in order to distribute the diffraction/reflection of light and provide aberration-free focusing, by combining diffraction condition and Bragg condition of these curved reflectors.

    Abstract translation: 用于集成光学器件的凹面衍射光栅通过用金属或多个介电材料元件的多个薄元件代替反射金属部件来构造,每个元件均部分地反射光,并以椭圆形方式布置,以分布光的衍射/反射 并通过组合这些弯曲反射器的衍射条件和布拉格条件,提供无像差聚焦。

    Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution
    100.
    发明申请
    Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution 有权
    曲线光栅光谱仪和具有非常高波长分辨率的波分复用器或解复用器

    公开(公告)号:US20130272695A1

    公开(公告)日:2013-10-17

    申请号:US13911847

    申请日:2013-06-06

    Applicant: Seng-Tiong Ho

    Abstract: The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.

    Abstract translation: 本申请公开了一种包括紧凑弯曲光栅(CCG)及其相关联的紧凑弯曲光栅光谱仪(CCGS)或紧凑弯曲光栅波长多路复用器/解复用器(WMDM)模块的系统及其制造方法。 该系统能够实现非常小的(分辨率vs.尺寸)RS因子。 在本发明中,可以调整入口狭缝和检测器的位置,以便为特定设计目标具有最佳性能。 使用取决于工作波长的规定公式计算初始槽间距。 基于两个条件计算凹槽的位置。 第一个是相邻槽之间的路径差应该是介质中的波长的整数倍,以便即使在入口处具有大的光束衍射角,也可以在检测器或输出狭缝(或输出波导)处聚焦的无像差光栅 狭缝或输入狭缝(或输入波导)。 第二个特定于曲面光栅光谱仪的特定设计目标。 在一个实施例中,每个具有狭缝和检测器处的​​焦点的椭圆镜用于每个凹槽,以获得无像差的曲面镜。

Patent Agency Ranking