Abstract:
Differences between an offline spectrophotometer and an inline spectrophotometer can result in differences between a hardcopy target color and a printed reproduction of that color. The inline spectrophotometer is inside of a printer and configured to measure printer output. As such, the inline spectrophotometer cannot conveniently measure the hardcopy target color. A printing error or an instrument offset can be determined and passed to a color correction module that updates the device dependent color specification associated with the given spot color. This color specification may be stored, for example, in the printer controller, and used when a document subsequently calls for that spot color, thereby providing accurate color reproduction from that particular printer incorporating that particular inline spectrophotometer.
Abstract:
A method for characterizing a primary radiant spectra of a projector includes projecting primary colors with a projector having a projector lamp and color filters. Measurements of each primary color are taken with a multi-band camera. Spectra of the color filters are estimated using the measurements from the multi-band camera. The primary radiant spectra of the projector are estimated using spectral data of the projector lamp and the estimated spectra of the color filters.
Abstract:
A method for characterizing the color response of an imaging device, the method includes reproducing a color on the imaging device based on a set of device color coordinates; measuring spectral values for the reproduced color with a spectral measurement device controlled by a digital processing system; calculating a first set of tristimulus values from the spectral values; defining a set of human observer color matching functions, the set of human observer color matching functions being functions of the first set of tristimulus values of the reproduced color; calculating a second set of tristimulus values from the spectral values using the defined set of human observer color matching functions; and associating the reproduced device color coordinate with the second set of tristimulus values.
Abstract:
A method is provided for improving the quality of cheese produced from a curd and whey mixture. The method comprises the steps of monitoring the curd and whey mixture during syneresis processing to collect color data, comparing the color data to a predetermined standard and terminating syneresis when the color meets the predetermined standard or, alternatively, analyzing the color data obtained to generate kinetic parameters that can be used to predict the end point of syneresis to improve control of curd moisture content.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
An information processing apparatus includes a unit configured to acquire spectral data of ambient light to be estimated, a unit configured to receive spectral data and ambient light type information of a plurality of reference ambient light conditions, a comparison unit configured to compare the spectral data of the ambient light to be estimated with the spectral data of the plurality of reference ambient light conditions, and an estimation unit configured to estimate an ambient light type of the spectral data of the ambient light to be estimated from the ambient light type information of the reference ambient light based on a result of comparison provided by the comparison unit.
Abstract:
Provided is a color controlling device, including a captured image data acquiring section that acquires captured image data obtained by capturing a plurality of targets, a color measuring section that acquires color measurement data obtained by measuring the colors of a plurality of targets, a first converting section that performs a first conversion including grayscale conversion for the captured image data and acquires first color data in a predetermined color space, a second converting section that performs a second conversion for the color measurement data and acquires second color data in a predetermined color space, and a modifying section that optimizes the first conversion executed by the first converting section based on a color difference between the first color data and the second color data, and weights.
Abstract:
A reference-color measurement step of obtaining a reference-color measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a reference-color portion in a measurement direction, or a tristimulus value thereof, using a light-source-color measuring instrument 5, without irradiating the reference-color portion with a light source for measurement, in a predetermined measurement environment; an objective-portion measurement step of obtaining an objective-portion measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a measurement-objective portion in the measurement direction, or a tristimulus value thereof, using the light-source-color measuring instrument 5, without irradiating the measurement-objective portion with a light source for measurement, in the measurement environment; and a color identification step of finding a color of the measurement-objective portion by means of computation from a ratio of the objective-portion measurement value with respect to the reference-color measurement value are equipped. Even when measuring a color of such a body, like a body including a fluorescent material, whose reflectivity has changed depending on the type of light source, it is possible to measure the color of such a body accurately.
Abstract:
A method and an arrangement for testing the quality of multicolor patterned surfaces with an n-channel imaging sensor such as a color camera or an imaging spectrometer. The method determines from the captured images the deviations of the color/spectral statistics and of the image sharpness with respect to references and, before an assessment, converts at least one of the deviations or threshold values using a transformation which emulates the genetically and/or culturally specific perception of the targeted customer groups. The method further allows a quality produced to be associated with a genetically and/or culturally specific group of customers who accept this quality in terms of their perception of multicolor patterned surfaces.