Abstract:
A method of mounting an electronic component having at least one contact extending across a part of its undersurface may include providing a support smaller in area than the undersurface of the component and having a contact pad for connection to the contact. The contact pad may have a first portion extending across an upper surface of the support adjacent one edge and a second portion extending from the edge across a side surface of the support. The method may also include positioning the electronic component and the support with the undersurface of the component adjacent the upper surface of the support. This is done so that the first portion of the contact pad is aligned with and spaced apart from a first portion of the contact, and the second portion of the contact pad is aligned with and disposed inwardly of a second portion of the contact.
Abstract:
A flip-chip package uses a substrate having bond pad spacing that matches terminal spacing on a chip at an elevated temperature, such as the temperature of the chip during bonding to the substrate, the melting point of solder used on the chip, a temperature within the range of thermal cycling of the chip, or an operating temperature of the chip. Matching spacing at an elevated temperature permits a better alignment at the bonding temperature for formation of stronger bonds.
Abstract:
A solder bonding system that includes a substrate having a recess and a conductive pad having a width. The conductive pad is disposed in the recess of the substrate. The solder bonding system also includes a solder pad contacting the conductive pad. The solder pad has a width greater than the width of the conductive pad. When the solder pad is heated, it forms a stable solder bond between the conductive pads.
Abstract:
The invention relates to an electronic component (1) with external connection elements (2) and to a method of electrically connecting and/or fixing an electronic component (1) and a printed-circuit board (15). For this purpose, the electronic component (1) has capillary elements (6) as external connection elements (2), which are connected to contact connection areas (3) of a leadframe (4) or to contact areas of a chip (5). The capillary element (6) protrudes out of the electronic component (1) and has on its protruding end (7) a suction opening (8) with capillary action.
Abstract:
A mounting structure includes a laminated ceramic capacitor mounted on a mounting substrate. The laminated ceramic capacitor includes a main body chip made by a ceramic dielectric, internal layer electrodes, and pair of terminal electrodes. The mounting substrate is made by alumina substrate, and has a pair of substrate electrodes made by copper plating. The laminated ceramic capacitor is mounted on the mounting substrate by using an Ag paste. Here, the substrate electrode is set to be smaller than the Ag paste. That is, the Ag paste is extruded from the terminal electrodes and the substrate electrode so as to contact to both of the main body chip and the mounting substrate. Because the Ag paste has a high adhesive strength compared to that when it is bonded with a metal, total adhesive strength can be improved. Consequently, the reliability of mounting can be improved.
Abstract:
The present invention is directed to a liquid crystal display including: a plurality of electrode terminals arranged on one of end faces of a TFT glass substrate in such a manner as to be aligned on an imaginary line; and a plurality of lead terminals of a tape carrier package aligned on the electrode terminals, said plurality of lead terminals connected through an anisotropic conductive film; wherein the electrode terminals near the end face of the glass substrate is formed obliquely in such a manner as to be extended in the direction of both right and left with respect to the plurality of electrode terminals.
Abstract:
Where an electrical connection is needed between an electric circuit on a substrate and a component with very finely spaced leads, pads are formed on the substrate at points where such connections to the circuit are to be made. A solder paste is deposited using a particular, described stencil having a thickness and apertures with specific tolerances. The component is positioned so that its leads to be attached are contiguous with corresponding pads, and the electrical connections are completed by reflowing the solder paste forming consistent and reliable electrical joints of solder alloy.
Abstract:
An electronic circuit apparatus has first and second pad electrodes arranged on a substrate to be separated by a first interval, first and second chip electrodes to be separated by a second interval smaller than the first interval, a first solder for fixedly attaching the first chip electrode to the first pad electrode and a second solder for fixedly attaching the second chip electrode to the second pad electrode. Because the first interval is longer than the second interval, any constricted portion does not exist in each of the first and second solders. Therefore, because any stress is not concentrated on any portion of each of the first and second solders, the occurrence of a crack in each of the first and second solders can be prevented.
Abstract:
A method of connecting a liquid crystal display element and a flexible circuit board to each other by which electrode terminals of the flexible circuit board and lead terminals of the flexible circuit board are registered accurately with each other after connection. According to this method, the terminal pitch of the electrode terminals of the liquid crystal display element is represented by P, the terminal pitch of the lead electrodes before a pressurizing and heating step is represented by p, and the elongation percentage of a base film of the flexible circuit board by the pressurizing and heating step is represented by .alpha., either one of the terminal pitches P and p is set in advance relative such that the relationship of P=(1+.alpha.)p may be satisfied.
Abstract:
An edge connector includes a first row of golden fingers and a second row of golden fingers. The first row of golden fingers is adjacent to a plugging end of the edge connector, and the second row of golden fingers is adjacent to the first row of golden fingers. In a plugging direction of the edge connector, each golden finger in the first row of golden fingers has a first end proximate to the plugging end and a second end opposite to the first end. A first end of a grounded golden finger in the first row of golden fingers is protruded from other golden fingers, and second ends of two or more than two golden fingers in the first row of golden fingers are not aligned with each other.