Abstract:
The interposer comprises a base 8 formed of a plurality of resin layers 68, 20, 32, 48; thin-film capacitors 18a, 18b buried between a first resin layer 68 of said plurality of resin layers and a second resin layer 20 of said plurality of resin layers, which include first capacitor electrodes 12a, 12b, second capacitor electrodes 16 opposed to the first capacitor electrode 12a, 12b and the second capacitor electrode 16, and a capacitor dielectric film 14 of a relative dielectric constant of 200 or above formed between the first capacitor electrode 12a, 12b and the second capacitor electrode 16; a first through-electrode 77a formed through the base 8 and electrically connected to the first capacitor electrode 12a, 12b; and a second through-electrode 77b formed through the base 8 and electrically connected to the second capacitor electrode 16.
Abstract:
The package substrate of the present invention comprises a carrying board, bump pads, wire bonding pads, a solder mask, metallic bumps, and a metallic protective layer. The solder pads and the wire bonding pads are disposed on the surface of the carrying board. The solder mask is patterned to expose bump pads, wire bonding pads, and part of the surface of the substrate on the periphery of the wire bonding pads. The metallic bumps are disposed on the surface of the bump pads and extend to the surface of the solder mask. The metallic protective layer is disposed on the surfaces of the metallic bumps and the wire bonding pads. Besides, a method for manufacturing this package substrate, a semiconductor package structure comprising this package substrate, and a manufacturing method thereof are disclosed. Therefore, the manufacturing process of the package substrate is simple, and the package substrate is slim.
Abstract:
A land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane. Provided is also a method of producing the land grid array interposer structure.
Abstract:
A wired circuit board has a plurality of insulating layers, a conductive layer having a signal wiring extending in a longitudinal direction which is covered with the insulating layers, and a signal connecting terminal provided on a longitudinal end of the signal wiring and exposed from the insulating layers, and a ground layer having a ground wiring covered with the insulating layers and formed to surround the signal wiring in a perpendicular direction to the longitudinal direction, and a ground connecting terminal provided on a longitudinal end of the ground wiring and exposed from the insulating layers. The signal connecting terminal and the ground connecting terminal are formed on an upper surface of the same insulating layer among the plurality of the insulating layers.
Abstract:
A semiconductor device that mounts a semiconductor chip in a multilayer substrate, including, inner layer conductive patterns formed in the multilayer substrate; extending conductive portions formed to extend on inner layer conductive patterns in the thickness direction, in the chip mounting area into which the semiconductor chip is mounted; and a cutout portion that is formed by cutting the multilayer substrate, and into which the semiconductor chip is contained, in the chip mounting area. And, in the cutout portion, the underside surface of the semiconductor chip and the inner layer conductive patterns are connected via the extending conductive portions at a same potential.
Abstract:
A power shunt for use within a semiconductor device of a type having a motherboard and an integrated circuit package electrically coupled to the motherboard and of a type having a spaced portion located between the motherboard and the package. The power shunt comprises a capacitor within the spaced portion between the motherboard and the package of the semiconductor device. The capacitor includes a conductive layer of a first type, a conductive layer of a second type, and a dielectric layer that electrically isolates the first type conductive layer from the second type conductive layer, wherein said first type conductive layer and second type conductive layer form a conductive bridge between the motherboard and the package. The arrangement of the capacitor fulfills the dual function of providing decoupling capacitance with the capability of supplying an additional path of current between the motherboard and package to the die load 16.
Abstract:
A flip chip substrate structure and a method to fabricate thereof are disclosed. The structure comprises a build up structure, a first solder mask and a second solder mask. Plural first and second electrical contact pads are formed on the first and second surface of the build up structure, respectively. A first solder mask having plural openings is formed on the first surface of the build up structure, and the openings expose the first electrical contact pads, wherein the aperture of the openings of the first solder mask are equal to the outer diameter of the first electrical contact pads. A second solder mask having plural openings is formed on the second surface of the build up structure, and the openings expose the second electrical contact pads, wherein the aperture of the openings of the second solder mask are smaller than the outer diameter of the second electrical contact pads.
Abstract:
A package substrate including a circuit board, a reinforcing plate and at least one conductive channel is provided. A first surface of the reinforcing plate is disposed on the circuit board for resisting the warpage of the circuit board. The reinforcing plate has an opening corresponding to a first contact of the circuit board exposed thereon. In addition, one end of the conductive channel is located in the opening and electrically connected to the first contact, and the other end of the conductive channel is located on a second surface of the reinforcing plate to form a bonding pad.
Abstract:
A land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane. Provided is also a method of producing the land grid array interposer structure.
Abstract:
A land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane. Provided is also a method of producing the land grid array interposer structure.