Abstract:
A printed wiring board has an insulating resin substrate having a first surface and a second surface, the insulating resin substrate having one or more penetrating-holes passing through the insulating resin substrate from the first surface to the second surface, a first conductor formed on the first surface of the insulating resin substrate, a second conductor formed on the second surface of the insulating resin substrate, and a through-hole conductor structure formed in the penetrating-hole of the insulating resin substrate and electrically connecting the first conductor and the second conductor. The penetrating-hole has a first portion having an opening on the first surface and a second portion having an opening on the second surface. The first portion and the second portion are connected such that the first portion and the second portion are set off from each other.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.
Abstract:
An interposer substrate of the present invention includes a planar substrate, and through hole wiring that is formed by filling a through hole that connects together a first main surface and a second main surface of this substrate with a conductor. When the through hole is viewed in a vertical cross-sectional view of the substrate, the through hole has a trapezoidal shape whose side walls are formed by an inside surface of the through hole, and two side faces of the trapezoid are not parallel to each other. The two side faces of the trapezoid are both inclined towards the same side relative to two perpendicular lines that are perpendicular to the first main surface or the second main surface at two apex points forming a top face or a bottom face of the trapezoid.
Abstract:
Provided are a spacer capable of avoiding a poor connection due to the suction of solder when the clearance width between a soldered semiconductor device and a printed circuit board is made constant, and a manufacturing method for the spacer. The spacer includes an electrically insulating base member, and at least one solder guiding terminal. The base member has a bottom face, a top face and at least one side face, of which the bottom face and the top face are out of contact with each other whereas the side face contacts one or both the bottom face and the top face. The solder guiding terminal covers the bottom face partially, the top face partially, and the side face partially or wholly. A solder guiding face as the surface of a portion of the solder guiding terminal covering the side face is not normal to the bottom face.
Abstract:
An electronic device comprises a housing having an outer face and an inner face. A key is provided on the housing, which comprises a micro hole formed in the housing and a conductive material extending within the micro hole to the outer face of the housing. A sensor is coupled to the conductive material to detect whether an object is brought into contact or out of contact with the micro hole at the outer face.
Abstract:
The wiring substrate having a recess section and a projecting section formed on at least one surface of the wiring substrate, and wires formed on both the recess section and the projecting section.
Abstract:
A method for manufacturing a printed wiring board including providing an insulating resin substrate having first and second surfaces, irradiating laser upon the first surface such that a first opening portion having an opening on the first surface and tapering inward is formed, irradiating laser upon the second surface such that a second opening portion having an opening on the second surface, tapering inward and communicated to the first opening portion is formed and that a penetrating-hole having the first and second opening portions is formed, forming an electroless plated film on an inner wall surface of the penetrating-hole, and forming an electrolytic plated film on the electroless plated film such that a through hole conductor structure is formed in the penetrating-hole. The opening of the first portion has an axis of the center of gravity offset with respect to that of the opening of the second opening portion.
Abstract:
Methods for forming vias are disclosed. The methods include providing a substrate having a first surface and an opposing, second surface. The vias are formed within the substrate to have a longitudinal axis sloped at an angle with respect to a reference line extending perpendicular to the first surface and the second surface of the substrate. The vias may be formed from the first surface to the opposing second surface, or the via may be formed as a first blind opening from the first surface, then a second opening may be formed from the second surface to be aligned with the first opening. Vias may be formed completely through a first substrate and a second substrate, and the substrates may be bonded together. Semiconductor devices including the vias of the present invention are also disclosed. A method of forming spring-like contacts is also disclosed.
Abstract:
Disclosed is a PCB including an embedded capacitor and a method of fabricating the same. The long embedded capacitor is formed through an insulating layer, making a high capacitance and various capacitance designs possible.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.