Abstract:
A method of mounting semiconductor integrated circuit devices comprising steps of forming a semiconductor device block having a plurality of semiconductor integrated circuit devices of vertical mounting type coupled to each other in parallel, and mounting the semiconductor device block on a printed board. A block of semiconductor integrated circuit devices comprising a plurality of semiconductor integrated circuit devices of vertical mounting type, and coupling means for coupling the plurality of semiconductor integrated circuit devices each other in parallel.
Abstract:
A surge suppression device which fits over the end of an electrical plug and permits normal mating of the plug with the female receptacle. In the preferred embodiment, the device includes a body of metal-oxide varistor (MOV) material where one pin is connected to one plate on the MOV and another plug pin is connected to an opposing plate on the MOV. The MOV breaks down when experiencing excessive voltage levels to shunt potentially damaging voltages between the plug pins thereby preventing the spikes from reaching the protected equipment.
Abstract:
An electronic package, comprising a circuit carrying substrate (30) and a semiconductor device (35). The substrate (30) has two opposing surfaces, the first or bottom surface having a plurality of solder pads (31) and the second or top surface having a circuitry pattern defined on it. A semiconductor device (35) is attached to the top surface of the circuit carrying substrate (30). A molded body (33) is formed completely around the semiconductor device (35) in order to encapsulate it, the molded body also substantially covering the top surface of the circuit carrying substrate (30). A layer of metal deposited directly on the molded body and the top surface of the circuit carrying substrate is delineated into another conductive circuitry pattern (38), with part of the pattern (36) connected to the circuitry pattern on the circuit carrying substrate. An electronic component (32) is mounted on the molded body (33) and electrically connected to the conductive circuitry pattern (38).
Abstract:
A novel packaging system for VLSI circuits allows low-cost construction and maintenance of complex high density high-performance devices with low power requirements. The devices can be individually created by software means from a small selection of standardizable IC chips by disposing a plurality of chips in leadless chip carriers in a mosaic on a substrate, and configuring them by software to selectively communicate with other chips of the mosaic or even to individually change their operating function. The immediate juxtaposition of the chip carriers in the mosaic eliminates transmission line data skew, and also allows considerable savings in chip space and power requirements by dispensing with interconnection drivers, receivers and bonding pads. The chip carrier mosaics may be assembled into modules suitable for plug-in connection to an interconnecting backplane to create even larger devices, and individual modules can be dynamically tested in their high-performance mode by configuring one or more modules as test modules and either plugging them into modules to be tested or making them a permanent part of the device's module array.
Abstract:
A novel packaging system for VLSI circuits allows low-cost construction and maintenance of complex high density high-performance devices with low power requirements. The devices can be individually created by software means from a small selection of standardizable IC chips by disposing a plurality of chips in leadless chip carriers in a mosaic on a substrate, and configuring them by software to selectively communicate with other chips of the mosaic or even to individually change their operating function. The immediate juxtaposition of the chip carriers in the mosaic eliminates transmission line data skew, and also allows considerable savings in chip space and power requirements by dispensing with interconnection drivers, receivers and bonding pads. The chip carrier mosaics may be assembled into modules suitable for plug-in connection to an interconnecting backplane to create even larger devices, and individual modules can be dynamically tested in their high-performance mode by configuring one or more modules as test modules and either plugging them into modules to be tested or making them a permanent part of the device's module array.
Abstract:
A novel packaging system for VLSI circuits allows low-cost construction and maintenance of complex high density high-performance devices with low power requirements. The devices can be individually created by software means from a small selection of standardizable IC chips by disposing a plurality of chips in leadless chip carriers in a mosaic on a substrate, and configuring them by software to selectively communicate with other chips of the mosaic or even to individually change their operating function. The immediate juxtaposition of the chip carries in the mosaic eliminates transmission line data skew, and also allows considerable savings in chip space and power requirements by dispensing with interconnection drivers, receivers and bonding pads. The chip carrier mosaics may be assembled into modules suitable for plug-in connection to an interconnecting backplane to create even larger devices, and individual modules can be dynamically tested in their high-performance mode by configuring one or more modules as test modules and either plugging them into modules to be tested or making them a permanent part of the device's module array.
Abstract:
A component module (15, 70), adapted for piggyback mounting on an IC Dip (51,81), preferably incorporates a decoupling capacitor (18, 44, 74), with opposite end electrodes (23, 24), encapsulated within a molded housing (21, 72) of preferably parallelepiped configuration. The electrodes are uniquely connected to only two of preferably four rectangularly shaped terminals (26-29, 76-79) that project downwardly from different corners of the housing. The terminals, as well as an optional heat sink (61) are preferably formed out of a strip stock carrier (33). The two capacitor-connected terminals (27, 29 and 77, 79) are uniquely diagonally disposed and spaced, for a decoupling application, so as to respectively engage the battery and ground leads of a standard pin-out DIP (51, 81). The other two diagonally disposed component module terminals (26, 28 or 76, 78) are electrically isolated from the capacitor, being employed only to facilitate the mounting of the module on an associated DIP. In one component module embodiment (15, FIG. 1), the terminals (26-29) are adapted for soldered securement to a circuit board (54), whereas in a second embodiment (70, FIG. 6) the terminals (76-79) are adapted to be snap-locked on and, thereafter, soldered to, upper horizontal shoulder portion (82a) of respectively aligned leads (82) of a supporting DIP (81).
Abstract:
A method of manufacturing an electrical circuit wiring assembly comprises the steps of preparing a first sub-assembly having a metal board chassis and a first circuit element provided with hard stiff leads, preparing a second sub-assembly having a second circuit element provided with soft thin leads and an eyelet terminal for connecting the soft thin lead to the hard lead by means of a soldered junction, and assembling the first and second sub-assemblies by a soldering operating to form a main wiring assembly. In the second sub-assembly the second circuit element and the eyelet terminal are carried temporarily on an unsolderable mounting tool. The first and second sub-assemblies are temporarily coupled to each other during the forming of the main assembly by means of a coupling tool or jig for applying molten solder to an exposed connecting portion of the eyelet terminal and to portions of the hard and soft leads extending from the eyelet terminal. After soldering, the unsolderable mounting tool and the coupling tool are removed from the soldered main wiring assembly so that a three-dimensional wiring assembly is obtained.
Abstract:
A method of manufacturing an electrical circuit wiring assembly comprises the steps of preparing a first sub-assembly having a metal board chassis and a first circuit element provided with hard stiff leads, preparing a second sub-assembly having a second circuit element provided with soft thin leads and an eyelet terminal for connecting the soft thin lead to the hard lead by means of a soldered junction, and assembling the first and second sub-assemblies by a soldering operation to form a main wiring assembly. In the second sub-assembly the second circuit element and the eyelet terminal are carried temporarily on an unsolderable mounting tool. The first and second sub-assemblies are temporarily coupled to each other during the forming of the main assembly by means of a coupling tool or jig for applying molten solder to an exposed connecting portion of the eyelet terminal and to portions of the hard and soft leads extending from the eyelet terminal. After soldering, the unsolderable mounting tool and the coupling tool are removed from the soldered main wiring assembly so that a three-dimensional wiring assembly is obtained.
Abstract:
A printed circuit board has temperature-stable electric components, such as resistance networks, disposed on the soldering side of the circuit board. The components mounted on the soldering side of the board are mounted as a unit containing the network, which unit has a recess which partially surrounds the solder connection location of the circuit board, at which point the unitary component is electrically and mechanically connected to the board. The recesses are beveled to facilitate solder flow, and cover approximately half of the connection location of the circuit board.