Abstract:
A continuous process for preparing a pressure sensitive adhesive using a planetary roller extruder is described. The continuous process includes introducing at least one non-thermoplastic elastomer into a planetary roller extruder and initially compounding the non-thermoplastic elastomer in the planetary roller extruder to form an initially masticated non-thermoplastic elastomer. Then, a solid raw material, a liquid material, or both are introduced into the initially masticated non-thermoplastic elastomer in the planetary roller extruder, and subsequent compounding of the initially masticated non-thermoplastic elastomer with these additional components occurs to form an adhesive composition.
Abstract:
An enhanced washability ink composition has enhanced rinsability and/or washability from fabric, walls, or skin. The composition may comprise about 70 wt % to about 95 wt % water; about 5 wt % to about 35 wt % one or more sugars (e.g., dextrins); about 1 wt % to about 40 wt % one or more optional dye blockers; about 0.1 wt % to about 15 wt % one or more dyes; and one or more optional additives. The rinsable ink composition is usable in a variety of instruments, including markers or pens. A method for making the rinsable ink composition comprises dissolving one or more sugars (e.g., dextrins) in water to form a sugar solution; subsequently adding one or more dyes to the sugar solution to form a sugar-dye solution; and subsequently adding one or more optional dye blockers to the sugar-dye solution.
Abstract:
The present invention discloses a semicrystalline polymer/graphene oxide composite film, comprising: a first semicrystalline-typed polymer, distributed in structural space of the composite film and having a porous structure; and graphene oxide, having a layered structure and distributed in the composite film wherein gas passage exist between adjacent layered structures, the first semicrystalline-typed polymer existing between part of adjacent layered structures forms into a second semicrystalline-typed polymer by further heat treatment after the first semicrystalline-typed polymer and graphene oxide are blended uniformly to be distributed in the composite film so as to fill and seal a portion of the porous structure to block gas from flowing to extend path length(s) of gas passage; wherein graphene oxide existing between the first semicrystalline-typed polymers induces formation of the second semicrystalline-typed polymer.
Abstract:
There is provided a method for stabilizing the weight of powder or granular material applied to, dispensed to, or deposited on an object per unit area smaller than or equal to square centimeter or square millimeter. Firstly a layer of powder or granular material with a uniform weight per unit area is formed on a substrate, and then application, dispensing, or deposition is performed by sucking the powder or granular material on the substrate and ejecting it to the object.
Abstract:
A method for producing color steel plate with multicolored patterns, the PLC control module of servo control system collects the process and rotation speed of each roller of the roller coating unit, calculates out and makes the theoretical roller surface linear velocity be consistent with the process rotation speed; conversely, the actual roller surface linear velocity of each roller of roller coating unit is collected by servo control module having an encoder, and the signal of actual roller surface linear velocity is input into the PLC control system, so that PLC control system can compare actual and theoretical roller surface linear velocity, and adjust current frequency until actual and theoretical roller surface linear velocity are consistent. Control method ensures actual roller surface linear velocity is consistent with process rotation speed, so there is no need to stop the line for adjusting in the production process, thus increasing the production efficiency.
Abstract:
A film application mechanism applies a pasty or fluid coating medium to a running fibrous material web, particularly a paper or cardboard web. At least one roller of a roller pair is an application roller, for transferring the coating medium provided in the form of a film on the application roller to one side of the fibrous material web. An application device and a doctor blade element are associated with the application roller such that the coating material is first applied in excess to the application roller upstream of the first nip by the application device and then removed in part in a second nip by the doctor blade element which forms the second film-forming nip with the application roller. Pressure sensors for determining a pressure profile transversely to the machine direction in the first and second nips are embedded in the elastic covering of the application roller.
Abstract:
An organosililane and a metal alkoxide mixed together at a given molar ratio are subjected to co-hydrolysis and polycondensation in a solution containing an organic solvent, water and a catalyst to obtain a precursor solution with a controlled inter-organosilane distance. The precursor solution is coated onto a solid surface, and then allowed to stand at room temperature under atmospheric pressure for a given time to obtain an organic/inorganic transparent hybrid film. A difference (hysteresis) between the advancing and receding contact angles of the hybrid film relative to a liquid having a surface tension of 18 to 73 dynes/cm has a smaller value than that of a surface treated by the organosilane alone. The hybrid film is improved in terms of adhesion, transparency, and the mobility of functional groups derived from the organosilane on the film surface. A solid surface can be covered by the organic/inorganic transparent hybrid film.
Abstract:
Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
Abstract:
The present invention relates to an anti-stick processing aid for use in a process for producing water-absorbing polymers, comprising the steps of: i) mixing (α1) 0.1 to 99.999% by weight of polymerizable, ethylenically unsaturated monomers containing acid groups, or salts thereof, (α2) 0 to 70% by weight of polymerizable, ethylenically unsaturated monomers copolymerizable with (αl), (α3) 0.001 to 10% by weight of one or more crosslinkers, (α4) 0 to 30% by weight of water-soluble polymers, (α5) 0-80% by weight of water, and (α6) 0 to 20% by weight, of one or more assistants, where the sum of the weights of (α1) to (α5) is 100% by weight, (ii) free-radical polymerization with crosslinking to form a water-insoluble, aqueous untreated hydrogel polymer, (iii) drying the hydrogel polymer, (iv) grinding and sieving the hydrogel polymer to size, (v) surface postcrosslinking the ground and sieved hydrogel polymer and (vi) drying and finishing the water-absorbing polymer, wherein the anti-stick processing aid is used alone or in mixtures before and/or in steps (iii).
Abstract:
A flexible chemiresistor (CR) sensor for sensing a molecule of interest in a fluid (liquid or gas) is provided. The flexible CR sensor comprises a flexible chemiresistor (CR) module. The flexible CR module comprises a flexible substrate such polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polyimide (PI), and a thin film nanoparticle assembly assembled on the flexible substrate. The thin film nanoparticle assembly comprises metal or metal alloy core, ligand-capped nanoparticles and molecular linkers connecting the nanoparticles. The flexible CR sensor and an intelligent pattern recognition engine can be incorporated in a handheld device that can detect a molecule of interest in a fluid (e.g., a liquid or gas) accurately, rapidly, and without false positives. Any sensing array nanomaterial, pattern recognition, and compact/or electronic hardware can be integrated to achieve a desired detection limit and response speed.