Abstract:
A solid-state spectral imaging device is described. The device includes an image sensor and a plurality of optical filters directly processed on top of the image sensor. Each optical filter includes a first mirror and a second mirror defining an optical filter cavity having a fixed height. Each optical filter also includes a first electrode and a second electrode having a fixed position located opposite to each other and positioned to measure the height of the optical filter cavity. Further, a method to calibrate spectral data of light and a computer program for calibrating light is described.
Abstract:
A colour sensor arrangement comprises a colour sensor arranged to generate at least a first channel signal being indicative of a colour of light incident on the colour sensor. A processing unit is connected to the colour sensor and arranged to generate a tuple of colour signals by processing the at least first channel signal. A memory is connected to the processing unit and a control unit is connected to the processing unit and to the memory. Furthermore, the control unit is arranged to receive calibration data relating the tuple of colour signals to a calibrated tuple of colour signals and arranged to store said calibration data (M) by means of the memory. An interface is connected to the processing unit and comprises an interface terminal.
Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
A low-radiance infrared airborne calibration reference is an infrared imaging and calibration method. The method includes positioning a mirror perpendicular to an optical axis of a focal plane array in both an open-face position and a mirror-reading position. Temperatures of a lens, window, and the mirror are determined. In-band radiance and offset is calculated to generate an adjusted calibration curve.
Abstract:
A spectroscopic measurement apparatus includes: a wavelength tunable interference filter including a fixed substrate having a fixed reflection film, a movable substrate having a movable reflection film, and an electrostatic actuator that changes a gap value of an inter-reflection-film gap by applying a voltage to bend the movable substrate; a detector that detects a light level; and a controller that measures a spectral characteristic of light under measurement. The controller includes a filter driver that applies a drive voltage to the electrostatic actuator to change the inter-reflection-film gap, a detected light level acquisition unit that acquires light levels detected by the detector, and a target light level acquisition unit that acquires a light level corresponding to an oscillation center of the movable substrate as a target light level based on how the detected light level transitions and a natural oscillation cycle that the movable substrate has.
Abstract:
Aspects of the disclosure include suppression of optical interference fringes in optical spectra via a modification to the refractive index of media that forms or is contained in one or more components of equipment utilized for optical spectroscopy. Such a modification can yield changes in the optical path of light propagating through at least one of the media, with the ensuing changes in the spectral structure of interference between light propagating through different optical paths. In certain embodiments, the refractive index of the media that forms or is contained in one or more components can be modified via application of a time-dependent stimulus to at least one of the one or more components. The applied stimulus can include pressure, mechanical strain or stress, temperature, a combination thereof, or the like.
Abstract:
An image capturing device includes a sensor unit that captures a predetermined range including a subject; a reference chart that is captured by the sensor unit together with the subject; an illumination light source that illuminates the subject and the reference chart; a lens member including one or more lenses arranged in an optical path of reflected light extending from the subject and the reference chart to the sensor unit; and a lens moving unit that moves at least one lens of the lens member so as to change a position thereof in a direction along the optical path.
Abstract:
Various embodiments include systems and methods to provide selectable variable gain to signals in measurements using incident radiation. The selectable variable gain may be used to normalize signals modulated in measurements using incident radiation. The selectable variable gain may be attained using a number of different techniques or various combinations of these techniques. These techniques may include modulating a modulator having modulating elements in which at least one modulating element acts on incident radiation differently from another modulating element of the modulator, modulating the use of electronic components in electronic circuitry of a detector, modulating a source of radiation or combinations thereof. Additional apparatus, systems, and methods are disclosed.
Abstract:
Embodiments of the present invention provide a Raman spectroscopic inspection method, comprising the steps of: measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; superposing the plurality of Raman spectroscopic signals to form a superposition signal; filtering out a florescence interfering signal from the superposition signal; and identifying the object to be inspected on basis of the superposition signal from which the florescence interfering signal has been filtered out. By means of the above method, a desired Raman spectroscopic signal may be acquired by removing the interference caused by a florescence signal from a Raman spectroscopic inspection signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object effectively.
Abstract:
A method and analyser for identifying, verifying or otherwise characterising a sample involves emitting electromagnetic radiation in at least one beam at a sample. The electromagnetic radiation includes at least two different wavelengths. A sample detector detects affected electromagnetic radiation resulting from the emitted electromagnetic radiation affected by the sample and provides output representing the detected affected radiation. A processor determines sample coefficients from the output and identifies, verifies or otherwise characterises the sample using the sample coefficients and training coefficients determined from training samples. The coefficients reduce sensitivity to a sample retainer variation and/or are independent of concentration.