Abstract:
A method is disclosed evaluating a silicon layer crystallized by irradiation with pulses form an excimer-laser. The crystallization produces periodic features on the crystalized layer dependent on the number of and energy density ED in the pulses to which the layer has been exposed. An area of the layer is illuminated with light. A microscope image of the illuminated area is made from light diffracted from the illuminated are by the periodic features. The microscope image includes corresponding periodic features. The ED is determined from a measure of the contrast of the periodic features in the microscope image.
Abstract:
A system, a method and a coordinate measuring machine is disclosed for determining the position of defects on objects. An interface is provided so that alignment and coordinate information from the inspection device can be sent to the coordinate measuring machine. A special illumination and detection arrangement is used with a plurality of optical elements in order to obtain a signal from defects on the unpatterned object. The light source of the illumination and detection arrangement is a laser light source for providing a partially coherent light beam. A computer calculates from the data provides by the detector array and the alignment and coordinate information of the object from the inspection device a position of the defect on the object.
Abstract:
Methods and systems are provided for using an engine laser ignition system to perform a visual inspection of an engine and diagnose various cylinder components and conditions based on engine positional measurements. Laser pulses may be emitted at a lower power level during an intake and/or exhaust stroke to illuminate a cylinder interior while a photodetector captures images of the cylinder interior. Additionally, laser pulses may be emitted at a higher power level to initiate cylinder combustion while the photodetector captures images of the cylinder interior using the light generated during cylinder combustion.
Abstract:
To detect an infinitesimal defect, highly precisely measure the dimensions of the detect, a detect inspection device is configured to comprise: a irradiation unit which irradiate light in a linear region on a surface of a sample; a detection unit which detect light from the linear region; and a signal processing unit which processes a signal obtained by detecting light and detecting a defect. The detection unit includes: an optical assembly which diffuses the light from the sample in one direction and forms an image in a direction orthogonal to the one direction; and a detection assembly having an array sensor in which detection pixels are positioned two-dimensionally, which detects the light diffused in the one direction and imaged in the direction orthogonal to the one direction, adds output signals of each of the detection pixels aligned in the direction in which the light is diffused, and outputs same.
Abstract:
A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 μs.
Abstract:
Method for realizing an inspection with short wavelength, high power light source and large numerical aperture, high performance optics to improve defect inspection sensitivity is disclosed. Short wavelength high power laser is realized by using a pulse oscillation type laser suitable for generation of high output power in a short-wavelength region. In addition, a spectral bandwidth of the laser is narrowed down so that amount of chromatic aberration of detection optics with single glass material (i.e. without compensation of chromatic aberration) is lowered to permissible level. Using highly workable glass material to construct the detection optics enables necessary surface accuracy or profile irregularity conditions to be met, even if the number of lenses is increased for large NA or the lens doesn't have a rotationally symmetrical aperture.
Abstract:
Provided is a photoacoustic microscope, including: an objective lens configured to collect excitation light into a specimen, the excitation light in a wavelength range that is absorbed by an object to be observed; a detection light optical system configured to (i) form an image of a point light source of detection light in a middle portion of a pupil of the objective lens, the detection light having a wavelength that is different from the wavelength range of the excitation light, and (ii) emit the detection light onto the specimen by means of the objective lens; an optical scanning unit configured to deflect the excitation light and the detection light that enter the objective lens, for scanning the specimen; and a light detection unit configured to detect reflected light of the detection light that is reflected by the specimen.
Abstract:
The present invention provides a novel category of naphthalene-based two-photon fluorescent probes having a general formula I, wherein: X is selected from the X1, X2, X3 and X4; The mentioned two-photon fluorescent probes have a low fluorescence background in the non-tumor cells and tissues, and have a strong and specific fluorescent signal in the tumor cells and tissues. These probes have a certain level of water-solubility, while having good membrane permeability. In addition, they have a bigger effective two-photon absorption cross section. The compounds of the present invention also have a lower biotoxicity, phototoxicity and photobleaching. There is sufficient difference between the spectral range thereof and that of a biological sample.
Abstract:
A terahertz electromagnetic wave generator according to the present disclosure includes: a thermoelectric material layer; and a light source system which is configured to irradiate the thermoelectric material layer with pulsed light and generate a terahertz wave from the thermoelectric material layer. The thermoelectric material layer includes a gradient portion in which transmittance of the pulsed light varies in a certain direction. And the light source system is configured to irradiate the gradient portion of the thermoelectric material layer with the pulsed light.