Abstract:
In a plasma display device, the scan electrode drive circuit is mounted at least on a first circuit board generating a sustain pulse and a second circuit board outputting a scan pulse to the scan electrodes. The first circuit board includes a plurality of first metal fittings, each having a screw hole, as an output terminal. The second circuit board includes a plurality of second metal fittings, each having a through-hole, as an input terminal. The first circuit board and the second circuit board are connected to each other by inserting and screwing screws into the screw holes of the first metal fittings via the through-holes of the second metal fittings.
Abstract:
A method of assembling an in-vivo imaging device with a flexible circuit board. The flexible circuit board may include a plurality of flexible installation units connected to one another through flexible connection units. The flexible installation units may be capable of having electrical components disposed thereon at a size suitable for being included in an in-vivo imaging device which may be inserted into a body lumen, e.g., a capsule endoscope.
Abstract:
A downhole tool string component has a through-bore intermediate first and second tool joints adapted for connection to adjacent tool string components. An instrumentation package is disposed within an outer diameter of the component. The instrumentation package comprises a circuit board assembly. The circuit board assembly comprises alternating rigid and elastomeric layers. The rigid layers are in electrical communication with each other.
Abstract:
Non-rectangular or rectangular interposers for space efficient, reliable to manufacture, high speed interconnections between two printed circuit boards, such as a motherboard and a mating board. One example provides space efficiency with a non-rectangular interposer, where the interposer may be at least approximately circular. Reliable manufacturing may be provided by the inclusion of one or more openings to accept one or more alignment features. In one example, a first opening is provided to accept a threaded boss, which may be used to fasten the two printed circuit boards and interposer together. In another example, a second opening may be provided to accept an alignment post, wherein the post aligns the interposer to the two printed circuit boards. Contacts may be provided on each side to mate with contacts on each of the two printed circuit boards.
Abstract:
In an embodiment, a substrate arrangement is provided. The substrate arrangement may include a semiconductor substrate including a first contact portion and a second contact portion on a first surface of the semiconductor substrate, wherein the semiconductor substrate is arranged such that the first contact portion and the second contact portion face each other. The substrate arrangement may further include an electrical connector configured to connect the first contact portion and the second contact portion.
Abstract:
A stacked mounting structure and a method of manufacturing stacked mounting structure are provided. The stacked mounting structure includes a plurality of members provided with a mounting area which is necessary for installing and operating components to be mounted on at least one principal surface, and an area for connections for signal transfer for operating the components to be mounted, and an electroconductive member which is disposed on the area for connections between the mutually facing members, and a cross section of the electroconductive member is same as or smaller than the area for connections, and an end portion of the electroconductive member is extended from a principal surface of one member up to a principal surface of the other member, and a height of the electroconductive member regulates a distance of the mounting area.
Abstract:
In at least one embodiment, a vehicle power module comprises a first printed circuit board (PCB) including a first plurality of electrical components for providing a first voltage and a second voltage. The vehicle power module further comprises a second PCB including a second plurality of electrical components, the second PCB being spaced away from the first printed circuit board and a first connector assembly being coupled to the first PCB and to the second PCB for providing the first voltage to the second PCB. The vehicle power module further comprises a second connector assembly being coupled to the first PCB and to the second PCB for providing the second voltage to the second PCB. The first connector assembly provides the first voltage of up to 14V and the second connector assembly provides the second voltage of 200V or greater.
Abstract:
Twist pin z-axis interconnectors are assembled in columns of aligned vias in stacked printed circuit boards of a circuit module in automated assembly cycles. Each assembly cycle involves singulating a single twist pin from a plurality of twist pins, inserting the twist pin into the via column, gripping a leader portion of the twist pin, pulling the gripped leader portion until a connection portion moves into contact with the vias of the column, severing the leader portion from the connection portion, extracting the severed leader portion, and automatically repeating assembly cycles until interconnectors have been assembled into a substantial majority of the via columns of the circuit module.
Abstract:
A structure for stacking Printed Board Assemblies (PBAs) in an electronic device is provided. The structure for stacking PBAs in an electronic device includes a clip mounted on a main Printed Circuit Board (PCB), a sub-PCB including a ground portion, a sub-PBA including the sub-PCB, and a clip header mounted on a lower part of the sub-PBA, wherein the clip header is inserted into the clip. Therefore, electronic components mounted on a main PCB can be shielded from outer electromagnetic waves while reducing material costs without using a shield can, and a sub-PBA can be stacked on the main PBA.
Abstract:
A stacked substrate module includes a first and a second substrate. The first substrate has several pads which extend respectively from a stacked area of the first substrate to the outside of the stacked area. The second substrate has several welding areas arranged on the outer lateral side thereof; each welding area extends respectively from the outer lateral side of the second substrate to an upper and a lower surface of the second substrate. The second substrate is stacked in the stacked area of the first substrate, wherein the lateral side of the second substrate is aligned to the edge of the stacked area of the first substrate. The aforementioned pads correspond to the welding areas respectively. It is suitable to position a solder paste between the pads and the welding areas which can be reflowed to connect the pads and the welding areas.