Abstract:
A circuit package has been described for routing long traces between an electronic circuit, such as a phase locked loop, and external circuit components. The traces are routed through two substrates. In each substrate, the traces are routed primarily on a layer adjacent to and between a pair ground planes located close to the traces. Degassing apertures are located to the side of the long traces to avoid interfering with the shielding provided by the grounds planes. The circuit package uses two power plated through holes and two ground plated through holes to reduce the noise on the power supply lines. The circuit package also separates the signal carrying plated through holes from the power plated through holes, which reduces noise on the long traces. Noise is further reduced on the long traces by using the ground plated through holes to shield the signal carrying plated through holes from noise generated at the power plated through holes.
Abstract:
Through holes are formed at four peripheral edges of a plurality of semiconductor chip placement regions of an insulating substrate, except for coupling portions partially arranged thereat. A substrate sheet for semiconductor module is used in which connecting portions between inner lead portions and outer lead portions arranged on both surfaces of the substrate are formed in pattern on the side wall surface of the through hole. The semiconductor chip is mounted on each region, electrode terminals thereof and the inner lead portions are electrically connected to each other, the chip is sealed, and then the coupling portions are cut.
Abstract:
A connection component is provided. The connection component includes (1) a first interposer having a first surface to which a microelectronic may be mounted and a second surface opposite from the first surface, (2) a second interposer that is more flexible than the first interposer and that is disposed under the second surface of the rigid interposer, and (3) a plurality of conductive parts that may be positioned in the first and second interposers and that may be exposed at the first surface of the first interposer, a bottom surface of the second interposer, or both the first and bottom surfaces. The electrically conductive parts may include leads. A socket assembly or a microelectronic element such as semiconductor chip may be mounted onto the first surface of the rigid interposer. The connection component may be mounted onto a support substrate.
Abstract:
This invention provides a method for producing an adapter for use with an LGA device. The method includes providing a flexible substrate having a conductive base layer. The method also includes forming a plurality of openings through the flexible substrate. The method further includes defining on the flexible substrate a plurality of vias extending through the openings in the flexible substrate, a plurality of conductive pads electrically connected to the vias, and a plurality of conductive paths extending between adjacent pads, wherein spaces are defined between the pads and the paths to prevent direct contact between the pads and the paths, each of the paths being connected to at least one of a plurality of peripheral pads provided on the flexible substrate. The conductive base layer substantially covers a portion of the substrate surface area. A portion of the base layer may be removed such that remaining portions form conductive branch traces used to connect selected conductive pads with selected conductive paths.
Abstract:
Disclosed is a liquid crystal display device of which overall size and weight can be minimized. The liquid crystal display device has a light generating unit for generating a light. A light guiding plate guides the light to a display unit for displaying an image. A reflection plate is disposed under the light guiding plate for reflecting the light to the light guiding plate. A receiving container receives the reflection plate, the light guiding plate and the light generating unit. At least one boss is formed on a bottom of the receiving container for preventing the light generating unit from being moved by guiding a position of the light generating unit. Accordingly, the number of the parts installed in the liquid crystal display device can be reduced, and the manufacturing cost can be decreased because the manufacturing process is simplified in comparison with the liquid crystal display device including a separate lamp cover.
Abstract:
In a computer system two integrated circuit devices are operatively mounted on the main system board using a pair of interstitial circuit boards sandwiched between the integrated circuit devices and the system board and having substantially smaller footprints than the system board. Each interstitial board has a series of terminating components, representatively resistors, interposed in its circuitry which interconnects the associated integrated circuit board with system board circuitry that, in turn, operatively couples the two integrated circuit boards. The incorporation of the terminating components in the interstitial boards instead of in the system board reduces the circuit complexity of the system board and the required number of layers therein, thereby reducing the cost of the system board and substantially simplifying its signal trace routing design.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier rightside up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier right-side up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.
Abstract:
A device is provided for structurally and electrically interfacing an integrated circuit (IC) chip with a printed circuit board (PCB) designed for another IC chip, where the two IC chips have different structural and/or electrical operating characteristics. The device provides structural and/or electrical interfaces for interfacing the IC chip with the PCB.
Abstract:
A method and apparatus are provided for mounting circuit elements on a printed wiring board, wherein an integrated circuit having terminals with a first interterminal pitch are mounted onto a first surface of a terminal density. conversion board which converts the first interterminal pitch of the integrated circuit to terminals with a second interterminal pitch larger than the first interterminal pitch on a second surface of the terminal density conversion board; and the terminals on the second surface of the terminal density conversion board with the second interterminal pitch are mounted onto the printed wiring board.