Abstract:
A method and apparatus for supporting a microelectronic substrate. The apparatus can include a microelectronic substrate and a support member carrying the microelectronic substrate. The apparatus can further include a first connection structure carried by the support member. The first connection structure can have a first bond site configured to receive a flowable conductive material, and can further have at least two first elongated members connected and extending outwardly from the first bond site. Each first elongated member can be configured to receive at least a portion of the flowable conductive material from the first bond site, with none of the first elongated members being electrically coupled to the microelectronic substrate. The assembly can further include a second connection structure that is electrically coupled to the microelectronic substrate and that can include second elongated members extending away from a second bond site. The number of second elongated members can be equal to the number of first elongated members.
Abstract:
A fabrication method and structure for a PBCA, and tool for assembly of the structure. The structure includes a circuit board, at least one first solder joint, a plurality of second solder joints, and an electronic device. The circuit board has a solder mask, having a plurality of openings exposing at least one first pad and a plurality of second pads arranged beyond the first pad, on a surface. The first solder joint has a maximum width J1 and electrically connects to the first pad. The second solder joints respectively have a maximum width J2 exceeding J1 and respectively electrically connect to the second pads. The electronic device has a plurality of third pads, arranged substantially corresponding to the openings, respectively electrically connecting to the first pad and second pads.
Abstract:
A circuit board design is disclosed that is useful in high-speed differential signal applications uses either a via arrangement or a circuit trace exit structure. A pair of differential signal vias in a circuit board are surrounded by an opening that is formed within a ground plane disposed on another layer of the circuit board. The vias are connected to traces on the circuit board by way of an exit structure that includes two flag portions and associated angled portions that connect the flag portions to circuit board traces. In an alternate embodiment, the circuit board traces that leave the differential signal vias are disposed in one layer of the circuit board above a wide ground strip disposed on another layer of the circuit board.
Abstract:
A solder ball pad is provided for mounting and connecting of electronic devices and, more particularly, apparatus and methods are disclosed providing an improved solder ball pad structure on a substrate, such as a printed circuit board (“PCB”) or a semiconductor die, while enabling better use of the spaces between adjacent solder ball pads, and at the same time providing increased surface area for bonding to a solder ball. More particularly, the inventive solder ball pad structure comprises a terminal pad exposed through an aperture in an insulative mask having a bond pad layer comprising at least another metal layer formed over, at most, a portion of the exposed portion of the terminal pad. Methods of manufacture and substrates incorporating same are also disclosed.
Abstract:
On a surface of an electronic component facing a substrate, a plurality of electrode terminals are provided which are of circular plane shapes. On regions of the main surface of the substrate facing the electrode terminals, a plurality of interconnect electrodes are provided which are of circular plane shapes.
Abstract:
A flexible circuit having vias disposed to minimize discontinuity in a ground plane separating opposing transmission lines. The flex circuit comprises a first transmission line coupled to a first surface, a second transmission line coupled to a second opposing surface and a ground plane separating the first transmission line and the second transmission line. The flexible circuit also includes a first type of electrical connection pads disposed on the first surface, and electrically coupled to the first transmission line. The flexible circuit also includes a second type of electrical connection pads disposed on the second surface, and electrically coupled to the second transmission line wherein the second type of electrical connection pads have a higher areal density than the first type of electrical connection pads. The flexible circuit also includes vias disposed proximate the first type of electrical connection pads and extended through the ground plane to provide for electrically coupling the first transmission line and the second transmission line, such that the vias reduce discontinuity in the ground plane and aggregate discontinuity in the flex circuit.
Abstract:
058804113 A method and apparatus for supporting a microelectronic substrate. The apparatus can include a microelectronic substrate and a support member carrying the microelectronic substrate. The apparatus can further include a first connection structure carried by the support member. The first connection structure can have a first bond site configured to receive a flowable conductive material, and can further have at least two first elongated members connected and extending outwardly from the first bond site. Each first elongated member can be configured to receive at least a portion of the flowable conductive material from the first bond site, with none of the first elongated members being electrically coupled to the microelectronic substrate. The assembly can further include a second connection structure that is electrically coupled to the microelectronic substrate and that can include second elongated members extending away from a second bond site. The number of second elongated members can be equal to the number of first elongated members.
Abstract:
A method and apparatus for printed circuit board pads with registering feature for component leads. A U-shaped metalized pad is disposed on a printed circuit board for soldering to a component lead. Solder is disposed on the pad and heated to a molten state so that surface tension and wetting effects form the molten solder into a solder mound having a U-shaped lateral cross section conforming to the U-shaped metalized pad. The solder mound has a first arm and a second arm, and a lateral aperture extending therebetween for receiving an extremity of the component lead, and registering the extremity of the component lead with respect to the pad.
Abstract:
The present invention is directed to a liquid crystal display including: a plurality of electrode terminals arranged on one of end faces of a TFT glass substrate in such a manner as to be aligned on an imaginary line; and a plurality of lead terminals of a tape carrier package aligned on the electrode terminals, said plurality of lead terminals connected through an anisotropic conductive film; wherein the electrode terminals near the end face of the glass substrate is formed obliquely in such a manner as to be extended in the direction of both right and left with respect to the plurality of electrode terminals.
Abstract:
A printed circuit board having circuit patterns printed thereon has a plurality of composite lands each including a first land having a terminal hole formed at its center for inserting the terminal of a selected electric or electronic part or device, and a plurality of second lands each being contiguous to and extending outwards from the first land. The areas contiguous to the contours of the first and second lands have no conductive foils, such as copper foils, thereon such that the substrate surface of the printed circuit board is exposed in these areas. The exposed areas are effective to confine the thermal energy in the limited areas for soldering. And the composite land shape defines a ridged cone-like solder lump, which can fixedly grip the terminal of the part or device.