Abstract:
A system in package (SiP) module includes a first circuit board assembly, a second circuit board assembly and a plurality of metallic pillars. The first circuit board assembly has a first top surface, a first bottom surface and a plurality of pads mounted on the first bottom surface. The second circuit board assembly has a second top surface, a second bottom surface and a plurality of second pads mounted on the second top surface. The metallic pillars are disposed between the first bottom surface and the second top surface. The metallic pillars electrically connect the first pad and the second pad.
Abstract:
A semiconductor device such as an LED illumination device includes a substrate sheet (2) and a plurality of LEDs (4) that are supported on the front of the substrate sheet. A plurality of apertures (9) extend through the substrate sheet (2) and thermally conductive elements in the form of conduits or tubes (1) extend through the apertures, while thermally conductive elements in the form of pads (10) extend between the LEDs and the tubes (1). Each tube (1) defines an open passage that extends through the apertures (9) between the front and the back of the substrate sheet (2), without obstruction. Heat generated in the LEDs is conducted to the tubes (1), from where it is dissipated through convection.
Abstract:
A process of making a heat radiating structure for high-power LED comprises: (1) providing a PCB board, a heat conducting plate and a heat radiating plate; (2) providing a first locating hole and a first fixation hole penetrating the PCB board, and welding a copper plate to one side of the PCB board; while soldering an electrode welding leg to the other side of the PCB board; (3) providing a second locating hole and a second fixation hole penetrating the heat conducting plate; (4) using a fixation column to pierce through both of the fixation holes for connecting together the PCB board and the heat conducting plate; (5) using a heat conducting column to pierce through both of the locating holes; (6) placing the integral piece of the heat conducting plate and the PCB board on a pressing equipment to adjust the height of the heat conducting column.
Abstract:
An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
A connector includes an insulation board, a conductor pattern, a rod-shaped member and a solder. The insulation board is provided with a through hole penetrating from a top face to a bottom face. The conductor pattern covers an internal wall of the through hole. The rod-shaped member includes a first end protruding beyond the bottom face and a second end inside the through hole. The solder closes a gap between the conductor pattern covering the internal wall of the through hole and the rod-shaped member and covers the second end of the rod-shaped member.
Abstract:
A method of making a wiring substrate having at least one interconnection layer includes forming a first metal layer on a surface of a support member having at least one columnar through hole that exposes the surface of the support member, forming a columnar metal layer that fills the columnar through hole, forming an insulating layer on the columnar metal layer and on the first metal layer, forming an interconnection layer on a first surface of the insulating layer electrically connected to the columnar metal layer through the insulating layer, and forming, by removing at least an entirety of the support member and an entirety of the first metal layer, a protruding part including at least part of the columnar metal layer protruding from a second surface of the insulating layer opposite the first surface, and serving as at least part of a connection terminal of the wiring substrate.
Abstract:
The present invention discloses a method for electrical connection between two surfaces of a ceramic substrate, and the method includes the steps of forming a through hole between the two surfaces of the ceramic substrate corresponding to electrical connection points of a circuit on the ceramic substrate, and then mounting a conductive assembly inside the through hole to form a conduction path between the two surfaces of the ceramic substrate. By this means, time cost of manufacturing of ceramic substrate circuit board could be largely decreased, and the manufacturing procedures could be much simplified as well.
Abstract:
An upper module board on which an integrated chip component with a low upper temperature limit is mounted and a lower module board on which a heat-generating semiconductor chip, a single chip component and an integrated chip component are mounted are electrically and mechanically connected via a plurality of conductive connecting members, and these are sealed together with mold resin. In such a circumstance, a shield layer made up of a stacked film of a Cu plating film and a Ni plating film is formed on side surfaces of the upper and lower module boards and surfaces (upper and side surfaces) of the mold resin, thereby realizing the electromagnetic wave shield structure.
Abstract:
An electrical structure including a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
An electrical structure and method of forming. The electrical structure includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.