Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A semiconductor sensor chip such as an acceleration sensor chip and other electronic components such as controlling semiconductor chips are mounted on and connected to conductor patterns formed on a ceramic package. The ceramic package is heated together with a cap to hermetically seal the ceramic package containing the sensor chip and electronic components therein. The conductor pattern formed on the ceramic package is composed of a base film of, i.e., tungsten, an intermediate film of nickel plated on the base film and a thin surface film of gold which is formed on the intermediate film by flash plating. The conductor patterns are also formed at outside portions of the ceramic package. The ceramic package is mounted on a printed board by soldering at portions where the conductor patterns are formed. Though the surface gold film is thin and made at a low cost, it provides an excellent surface of the conductor patterns for securing a good solder wettability and bonding quality.
Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
A method for manufacturing raised contacts on the surface of an electronic component includes bonding one end of a wire to an area, such as a terminal, of the electronic component, and shaping the wire into a wire stem configuration (including straight, bent two-dimensionally, bent three-dimensionally). A coating, having one or more layers, is deposited on the wire stem to (i) impart resilient mechanical characteristics to the shaped wire stem and (ii) more securely attach ("anchor") the wire stem to the terminal. Gold is one of several materials described that may be selected for the wire stem. A variety of materials for the coating, and their mechanical properties, are described. The wire stems may be shaped as loops, for example originating and terminating on the same terminal of the electronic component, and overcoated with solder. The use of a barrier layer to prevent unwanted reactions between the wire stem and its environment (e.g., with a solder overcoat) is described. Bonding a second end of the wire to a sacrificial member, then removing the sacrificial member, is described. A plurality of wire stems may be formed on the surface of the electronic component, from different levels thereon, and may be severed so that their tips are coplanar with one another. Many wire stems can be mounted, for example in an array pattern, to one or to both sides of electronic components including semiconductor dies and wafers, plastic and ceramic semiconductor packages, and the like.
Abstract:
A contact device for an electrical component, particularly a connector, comprising at least one contact element, said contact element having a first contact portion located within said component and second contact portion projecting downwardly beyond said component and adapted to be connected to a conductor, in particular a conductor of a printed circuit board, by soldering, wherein the first contact portion consists of a resilient metallic material and the second contact portion consists of a shape memory alloy, the alloy having a transformation temperature which is significantly higher than the operation temperature of the contact device, the contact device being located or oriented such that it deforms towards said conductor above said transformation temperature.
Abstract:
A gold bump contact on an electronic component is solder bonded to a bond pad of a printed circuit board or the like utilizing a solder composed of tin-bismuth alloy. The solder is applied to the bond pad as an electroplate or a paste, after which the gold bump is superposed onto the bond pad. The assembly is heated to a first temperature to melt the solder and thereafter maintained at a temperature less than 150.degree. C. to permit the molten solder to wet the gold surface, after which the assembly is cooled to solidify the solder and complete the connection. Wetting at the relatively low temperature retards dissolution of the gold and thereby reduces formation of unwanted gold tin intermetallic compounds that tend to decrease mechanical properties of the connection.
Abstract:
This disclosure relates to laser bonding electrical components having conductive elements which are naturally reflective of the laser beam wavelength. Component leads or pads which are made of copper or have a gold coating, for example, will reflect the wavelength of an Nd:YAG laser, making it difficult to form physical and electrical bonds using the laser bonding technique. In preferred embodiments, the conductive elements are coated with a non-flux, non-metallic, coating material which is less reflective of the laser energy than the conductive elements, making it possible to efficiently use a laser to accomplish bonding.
Abstract:
A method and apparatus for interconnecting electronic circuit boards through the use of twisted wire jumpers which are formed from multifilament wire and which have enlarged bird cages formed along the pins. The pins are drawn through a stack of circuit boards to position the cages in contact with interconnection apertures located in the printed circuit boards. The frictional engagement of the cages in the apertures provides both electrical inter connection of, and mechanical coupling between the printed circuit boards.
Abstract:
A connection structure between lead frames and a base plate of aluminum nitride, to be applied as a connection structure between components of a semiconductor apparatus, has a base plate made of a sintered body of aluminum nitride on which a semiconductor device is to be mounted. The lead frames are made of iron alloy containing nickel in 29 wt. % and cobalt in 17 wt. %. A silver solder is used for joining the base plate and the lead frames. A surface of the lead frame to be joined to the base plate is clad with a stress relief layer of oxygen-free copper of a high plastic deformability to relieve, by its plastic deformation, a thermal stress caused by a difference between a thermal expansion coefficient of the aluminum nitride base plate and that of the lead frame in a cooling process at the time of soldering. Preferably, only a portion of each lead frame to be joined to the base plate comprises an inner layer of an iron alloy containing 29 wt. % of nickel and 17 wt. % of cobalt, and an outer layer portion of oxygen-free copper.