Abstract:
There is provided a method for forming a composite cavity and a composite cavity formed using the method. The method comprises the following steps: providing a silicon substrate (101); forming an oxide layer on the front side thereof; patterning the oxide layer to form one or more grooves (103), the position of the groove (103) corresponding to the position of small cavity (109) to be formed; providing a bonding wafer (104), which is bonded to the patterned oxide layer to form one or more closed micro-cavity structures (105) between the silicon substrate (101) and the bonding wafer (104); forming a protective film (106) over the bonding wafer (104) and forming a masking layer (107) on the back side of the silicon substrate (101); patterning the masking layer (107), the pattern of the masking layer (107) corresponding to the position of a large cavity (108) to be formed; using the masking layer (107) as a mask, etching the silicon substrate (101) from the back side until the oxide layer at the front side thereof to form the large cavity (108) in the silicon substrate (101); and using the masking layer (107) and the oxide layer as a mask, etching the bonding wafer (104) from the back side through the silicon substrate (101) until the protective film (106) thereover to form one or more small cavities (109) in the bonding wafer (104). The uniformity of thickness of the semiconductor medium layer where the small cavity (109) in the composite cavity is located is well controlled by the present invention.
Abstract:
After formation of a template layer over a neutral polymer layer, a self-assembling block copolymer material is applied and self-assembled. The template layer includes a first linear portion, a second linear portion that is shorter than the first linear portion, and blocking template structures having a greater width than the second linear portion. The self-assembling block copolymer material is phase-separated into alternating lamellae in regions away from the widthwise-extending portion. The blocking template structures perturb, and cause termination of, the lamellae. A cavity parallel to the first and second linear portions and terminating in self-alignment to the blocking template structures is formed upon selective removal of a polymeric block component. The pattern of the cavity can be inverted and transferred into the material layer to form fins having different lengths.
Abstract:
In one example, a method includes forming a template having a plurality of elements above a process layer and forming spacers on sidewalls of the plurality of elements. Portions of the process layer are exposed between adjacent spacers. At least one of the plurality of elements is removed. A mask structure is formed from a directed self-assembly material over the exposed portions. The process layer is patterned using at least the mask structure as an etch mask.
Abstract:
The present invention relates to a method for forming a silicon oxide nanopattern, in which the method can be used to easily form a nanodot or nanohole-type nanopattern, and a metal nanopattern formed by using the same can be properly applied to a next-generation magnetic recording medium for storage information, etc., a method for forming a metal nanopattern, and a magnetic recording medium for information storage using the same.The method for forming a silicon oxide nanopattern includes the steps of forming a block copolymer thin film including specific hard segments and soft segments containing a (meth)acrylate-based repeating unit on silicon oxide of a substrate; conducting orientation of the thin film; selectively removing the soft segments from the block copolymer thin film; and conducting reactive ion etching of silicon oxide using the block copolymer thin film from which the soft segments are removed, as a mask to form a silicon oxide nanodot or nanohole pattern.
Abstract:
A mirror device includes a frame body, a mirror configured to tilt about a Y-axis with respect to the frame body, a fixed inner comb electrode including a plurality of electrode fingers arranged in the arrangement direction along the Y-axis and provided at the frame body, and a movable inner comb electrode including a plurality of electrode fingers arranged in the arrangement direction and provided at the mirror, the electrodes fingers of the fixed inner comb electrode and the movable inner comb electrode being alternately arranged. The mirror includes a mirror body and an extension extending from the mirror body. Some of the electrode fingers of the movable inner comb electrode are provided at the mirror body, and another electrode fingers of the movable inner comb electrode are provided at the extension.
Abstract:
A MEMS device is formed with facing surfaces of a contoured substrate and a layer of material having complementary contours. In one fabrication approach, a first photoresist layer is formed over a substrate. Selected regions of the first photoresist layer are exposed using a patterning mask. The exposed regions of the first photoresist layer are thermally shrunk to pattern the first photoresist layer with a contour. A layer of material is formed over the contoured first photoresist layer.
Abstract:
In one example, a method includes forming a template having a plurality of elements above a process layer and forming spacers on sidewalls of the plurality of elements. Portions of the process layer are exposed between adjacent spacers. At least one of the plurality of elements is removed. A mask structure is formed from a directed self-assembly material over the exposed portions. The process layer is patterned using at least the mask structure as an etch mask.
Abstract:
A MEMS device is formed with facing surfaces of a contoured substrate and a layer of material having complementary contours. In one fabrication approach, a first photoresist layer is formed over a substrate. Selected regions of the first photoresist layer are exposed using a patterning mask. The exposed regions of the first photoresist layer are thermally shrunk to pattern the first photoresist layer with a contour. A layer of material is formed over the contoured first photoresist layer.
Abstract:
A pressure sensor having a diaphragm having a boss with a pattern. The diaphragm having a boss may be regarded as a bossed diaphragm. The bossed diaphragm may have higher sensitivity than a flat plate diaphragm having the same area as the bossed diaphragm. The bossed diaphragm may incorporate a simple cross pattern that can further improve the sensitivity and linearity of a pressure response of the diaphragm at low pressures. Reduction of sharp edges and corners of the boss and its legs around the periphery of the diaphragm may reduce high stress points and thus increase the burst pressure rating of the bossed diaphragm.
Abstract:
A MEMS device, a method of making a MEMS device and a system of a MEMS device are shown. In one embodiment, a MEMS device includes a first polymer layer, a MEMS substrate disposed on the first polymer layer and a MEMS structure supported by the MEMS substrate. The MEMS device further includes a first opening disposed in the MEMS substrate and a second opening disposed in the first polymer layer.