Abstract:
An infrared emitter, which utilizes a photonic bandgap (PBG) structure to produce electromagnetic emissions with a narrow band of wavelengths, includes a semiconductor material layer, a dielectric material layer overlaying the semiconductor material layer, and a metallic material layer having an inner side overlaying the dielectric material layer. The semiconductor material layer is capable of being coupled to an energy source for introducing energy to the semiconductor material layer. An array of holes are defined in the device in a periodic manner, wherein each hole extends at least partially through the metallic material layer. The three material layers are adapted to transfer energy from the semiconductor material layer to the outer side of the metallic material layer and emit electromagnetic energy in a narrow band of wavelengths from the outer side of the metallic material layer.
Abstract:
Apparatus and method for measuring angular distribution of light generated by visual displays or light emitting devices are provided. An optical probe can be rotated manually around test point; meanwhile the optical probe drives a goniometer. The goniometer provides angular location of the optical probe to a data acquiring circuit. The central axis of goniometer is separated from the central axis of the circular movement of optical probe. A Y shape cable transits light and angle information for data acquiring.
Abstract:
A handheld fluorescence detector that includes a handheld data processing system and a UV light source connected to the data processing system is disclosed. The UV light source illuminates an object to be scanned with light having a UV illumination wavelength. A safety mechanism inhibits the light from the UV light source from reaching an eye of a person in the vicinity of the UV light source at an intensity that would damage the eye. A fluorescence detector senses fluorescent light generated by the object in response to the illumination. The fluorescence detection can utilize a photodetector or a human observer. The detector can be included in a cellular telephone or PDA. Safety mechanisms that utilize baffles or total internal reflection to protect the user are described. In addition, interlock mechanisms that prevent the UV light source from being activated when no object is present can be incorporated.
Abstract:
A monitoring port assembly for a fluid treatment system, such as for use in an ultra-violet water treatment system. The port assembly comprises a sensor port cup having a port for access to an interior of the fluid treatment vessel. The port is offset from the central axis of the sensor port cup. A cylindrical body, having an offset through-hole to receive a sensor assembly, is disposed within the sensor port cup for rotational movement about the central longitudinal axis between an operational position where the offset through-hole is aligned and coincident with the port, and a servicing position where the offset through-hole is displaced relative to the port. Sensors can be safely and conveniently removed from or installed into a port in the fluid treatment vessel by rotating the cylindrical body from the servicing to the operational position.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A photo-sensing device includes a light emitting part, a light receiving part, and a housing. The light emitting part emitting a beam of light to the light receiving part, and the housing contains the light emitting part and the light receiving part. The housing includes at least an opening, and the opening is covered by an insulation component to prevent electrostatic charges from damaging the photo-sensing device.
Abstract:
A method and system for detecting and monitoring a temporal and spatial distribution of a light beam are provided. A semiconductor substrate (120) having a given doping concentration range is partially exposed to an incident laser beam (150). Each part of the semiconductor structure (120) which is exposed to the laser beam is provided with an electrical contact (145), which outputs a voltage which is directly related to the optical power or energy incident on the exposed area. The thermo-voltage is produced by the laser induced thermal gradients. The sensitivity and inter-pixel cross-talk is determined by pixel pitch, doping concentration and window opening (110). Depending of the design, each pixel might be sensitive to the temporal variation of the laser beam.
Abstract:
Purging of a light beam path in an effective manner that minimizes the affect of the purging requirement on system throughput. In one embodiment, the invention is incorporated into a birefringence measurement system that has several components for directing light through a sample optical element and thereafter detecting and analyzing the light. The segment of the beam path through the sample is isolated to reduce the volume that requires continual purging.
Abstract:
An organic electroluminescent device and a method therefor are disclosed. The device comprises a transparent substrate and a plurality of pixels on the transparent substrate, wherein the pixels comprise red light pixels, green light pixels and blue light pixels. In addition, the device further comprises a red light detector adjacent to the red light pixels on the transparent substrate; a green light photo-detector adjacent to the green pixels on the transparent substrate and; and a blue light photo-detector adjacent to the blue pixels on the transparent substrate.
Abstract:
The invention relates to a device for detecting of an UV radiation as well as a housing which is part of the device and which receives a light sensor. The sensor housing comprises the following features: a wall which encloses the sensor; the wall comprises a region of incidence facing one or several UV radiation sources (1) as well as a region opposite to the UV radiation sources (1); at least the region of incidence consists of a material transparent to UV rays; the whole sensor housing (4) respectively the sensor housing (4) without the region opposite to the UV radiation source (1) is made of one single piece and free of openings.