Abstract:
A Fabry-Perot resonator apparatus and method including an in-resonator polarizing element improves detection/measurement sensitivity of an optical system, provides both fields at a single end of the resonator, and overcomes other structural and performance limitations of particular optical systems. A polarizing element, which may be a quarter-wave plate, a 45-degree Faraday rotator or other polarizing element capable of converting between linear and circular polarizations and back, is placed in the resonance path of the Fabry-Perot resonator. The polarizing element effectively doubles the cavity length and orthogonally isolates forward from reverse reflection rays within the resonator, eliminating interference between rays and providing isolated bright and dark fields at each end of the resonator. The polarizing element is introduced in a lens-incorporating Fabry-Perot resonator to eliminate cross-talk between image points and is used in a non-normal incidence Fabry-Perot resonator to emit bright and dark resonance information at either end of the resonator.
Abstract:
A method of determining the crystalline orientation of a crystal surface of a workpiece using Raman spectroscopy. A beam of substantially monochromatic light is directed to be incident on the crystal surface at a predetermined angle of incidence. The beam of light is substantially polarized. The workpiece is rotated relative to the beam of light about a rotation axis substantially normal to the crystal surface. A Raman shift of scattered light is measured at each of a number of rotational positions during the rotation of the workpiece. The crystalline orientation of the crystal surface is determined based on the measured Raman shifts. Data indicating the determined crystalline orientation of the crystal surface is stored.
Abstract:
The invention concerns measurements in which light interacts with matter to generate light intensity changes, and spectrophotometer devices of the invention provide ultrasensitive measurements. Light source noise in these measurements can be reduced in accordance with the invention. Exemplary embodiments of the invention use sealed housings lacking an internal light source. In some embodiments a substantially solid thermally conductive housing is used. Other embodiments include particular reflection based sample and reference cells. One embodiment includes a prism including an interaction surface, a detector, a lens that focuses a prism beam output onto the detector, and a closed interaction volume for delivering gas or liquid to the interaction surface. Another embodiment replaces a prism with a reflective surface. Another embodiment replaces a prism with a scattering matte surface. Aspects of the invention identify noise-contributing components in spectrophotometry and realize noise levels very near the shot noise limit.
Abstract:
Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Abstract:
An apparatus for separating fluorescent light from light elastically scattered/reflected from a material illuminated with a broadband illumination source includes a polarization discriminator, which separates the substantially polarized elastically scattered/reflected light from the unpolarized fluorescent light, and a spectrometer to analyze the full and separated reflectance spectra. A linear polarizer may be provided to polarize the illumination source. A method for separating fluorescence light induced in a material by broadband light from an elastic scattering/reflection component includes providing polarization discrimination to separate the components, the fluorescence light being substantially unpolarized, and spectrally analyzing the reflectance components. The method may include linearly polarizing the light source. A fluorescence spectra may be extracted from a minimum reflectance spectra or from a residual polarization reflectance spectra.
Abstract:
A sensor containing a beam emitter that emits a first beam having laser, a beam-splitting interferometer and an array detector, wherein the first beam is to strike a sample that produces a second beam comprising a Raman signal, the beam-splitting interferometer is to create a phase delay in the second beam, and the array detector comprises a plurality of detectors is disclosed. The sensor could be used for spectroscopic detection of a sample by generating a first beam comprising laser, striking the first beam to a sample to produce a second beam comprising a Raman signal, creating a phase delay in the second beam and detecting the Raman signal of the second beam. The uses of the sensor include detection of biological and chemical warfare agents, narcotics, among others for homeland security.
Abstract:
The image processing system is applied to dentistry, for example, and performs photography of the teeth of a patient while causing a plurality of illumination light LEDs of different wavelengths to emit light by means of a photography device when producing a crown repair or denture of the patient, whereby image data are acquired. The image data are transmitted to a dental filing system constituting a processing device where color reproduction data are determined through computation. In addition, color reproduction data are transmitted to the dental technician's office via a public switched network. Therefore, a repair material compound ratio calculation database is searched and the compound data for a material that matches the hue of the patient's teeth are found, whereby a crown repair or denture or the like that very closely matches the color of the patient's teeth is produced.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
The invention concerns measurements in which light interacts with matter giving rise to changes in light intensity, and preferred embodiment spectrophotometer devices of the invention provide for ultrasensitive measurements through a reflection interaction with matter. The level of light source noise in these measurements can be reduced in accordance with the invention. Preferred embodiments of the invention use sealed housings lacking an internal light source, and reflection based sample and reference cells. In some embodiments a substantially solid thermally conductive housing is used. Other features of preferred embodiments include particular reflection based sample and reference cells. A total internal reflection embodiment includes, for example, a prism including an interaction surface, a detector, a lens that focuses a beam output from the prism onto the detector, and a closed interaction volume having an inlet and an outlet for delivering gas or liquid to the interaction surface. In a specular reflection embodiment, a reflective surface is used instead of a prism. In a diffuse reflection embodiment a matte surface is used instead of a prism and the matte surface produces scattering. Aspects of the invention include identification of noise-contributing components in spectrophotometry and the select set of preferred features in a given embodiment, and noise levels very near the shot noise limit may be realized with application of preferred embodiment devices.
Abstract:
The disclosure generally relates to a method and apparatus for compact dispersive imaging spectrometer. More specifically, one embodiment of the disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension. The portable system can include a photon emission source for sequentially illuminating a plurality of portions of said sample with a plurality of photons to produce photons scattered by the sample. The photon emission source can illuminate the sample along the first spatial dimension for each of plural predetermined positions of the second spatial dimension. The system may also include an optical lens for collecting the scattered photons to produce therefrom filtered photons, a dispersive spectrometer for determining a wavelength of ones of the filtered photons, a photon detector for receiving the filtered photons and obtaining therefrom plural spectra of said sample, and a processor for producing a two dimensional image of said sample from the plural spectra.