Abstract:
The invention provides an image processing apparatus including a region specifying unit for specifying a measurement-object region from an image; a measurement-region defining unit for defining at least one measurement region in the specified measurement-object region; and a characteristic-sample selecting unit for respectively selecting, from a plurality of characteristic samples that are registered in advance, at least one characteristic sample that is close to each measurement region.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
A processor implemented prosthodontia system employs digital imaging of a restoration site and surrounding areas of an oral cavity and digital sampling of colorimetric values of tooth surfaces. The processor selects digital image data representative of a tooth surface configuration corresponding to the tooth number of the tooth to be restored and generates a three dimensional image of the restoration, with colorimetric values. Data comprising the shape and colorimetric values of the restoration is transmitted to a fabrication station for processor controlled fabrication through implementation of, for example, a three dimensional jet printing system employing particulate porcelain, polymeric dental composite, etc., and a binder, solvent or reactant and which builds a preform in successive layers of incremental cross sectional heighths. The shaped and colored preform is then hardened to produce a restoration having the specified size, shape and colorimetric values.
Abstract:
Color measuring systems and methods such as for determining the color or other characteristics of teeth are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
An apparatus for suitable for obtaining an image of a dental structure has an illuminator member placed proximate the area to be imaged. The illuminator member has a support structure (30) for retaining the illuminator member in position proximate the area to be imaged. A reference (22) is coupled to the support structure (30) of the illuminator member and disposed within the area to be imaged. At least one light source (24) is coupled to the support structure (30) of the illuminator member for directing imaging illumination toward the area to be imaged. A camera (12) records an image from within the area to be imaged using the imaging illumination from the illuminator member, wherein the image comprises the reference (22).
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A dental shade lamp for visually comparing a dental shade to a natural tooth comprises a housing having an aperture formed through the housing and a light source for illuminating the dental shade and natural tooth. The aperture provides an unobstructed view of the dental shade and natural tooth while maintaining the shade lamp in close proximity to the dental shade and natural tooth. The light source may be fluorescent light bulbs positioned adjacent the aperture that emit light having a color temperature of greater than about 6,000 K, to more closely approximate natural light conditions, and an illuminance intensity of greater than about 75 foot-candles, to limit the effects from ambient lighting conditions. In this way, a more accurate visual comparison can be made resulting in an accurate match between prosthetic teeth and natural teeth.
Abstract:
An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses colorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
Abstract:
A spectrometer apparatus for determining an optical characteristic of an object or material is disclosed. A probe is positionable to be in proximity to the object or material. First and second receivers are provided on the probe. Light from one or more first receivers is coupled to one or more first optical sensors via a spectral separation implement. Light from one or more second receivers is coupled to one or more second sensors without spectral separation of the light. A light source provides light to the object or material via the probe. A processor coupled to receive one or more signals from the first and second sensors determines the optical characteristic of the object or material and determines a physical position property of the probe with respect to the object or material or a non-color optical property of the object or material. The physical position property may be a distance or angular position of the probe with respect to a surface of the object or material. The non-color optical property may be translucence, gloss, gray level and/or surface texture.
Abstract:
The invention relates to a method for restoration of a patient's tooth. An electronic image of a patient's tooth or tooth preparation is generated in a dentist's office by the dentist. The image includes color information of the tooth preparation or of the patient's tooth shade. The electronic image is forwarded to a dental laboratory by direct computer link or e-mail. A technician at the laboratory evaluates the image and suggests restorative options to the dentist, including whether further tooth preparation is required. The technician also selects the appropriate restoration tooth shade(s) so that the dental prosthesis matches the color of the patient's tooth. The laboratory then manufactures the prosthesis utilizing a plurality of porcelain coatings. If desired, an image of the prosthesis can be generated in the laboratory and forwarded to the dentist for verification of color and/or fit prior to finalizing manufacture of the prosthesis.