Abstract:
A printed wiring board includes a main body having a mounting portion and ground and power supply pads in the mounting portion such that a ground line of a semiconductor device is connected to a ground pad and a power supply line of the device is connected to a power supply pad, and a layered capacitor disposed in the main body and having a high dielectric constant layer and first and second layer electrodes sandwiching the dielectric layer. One of the electrodes is connected to the power supply line and the other electrode is connected to the ground line, the first electrode has a solid pattern including passage holes through which second rod terminals connected to the second electrode pass in a non-contacting manner, and the second electrode has a solid pattern including passage holes through which first rod terminals connected to the first electrode pass in a non-contacting manner.
Abstract:
The invention provides a process for producing a substrate having a conductor arrangement that is suitable for radio-frequency applications, with improved radio-frequency properties. For this purpose, the process includes the steps of: depositing a structured glass layer having at least one opening over a contact-connection region by evaporation coating on the substrate and applying at least one conductor structure to the structured glass layer so that the at least one conductor has electrical contact with the contact-connection region.
Abstract:
A via structure configured for electrical and fluidic interconnection, and including an electrically conductive layer and an electrically insulating layer disposed on the electrically conductive layer.
Abstract:
An electronic component having: a substrate, a lower conductor layer provided on the substrate; an inorganic dielectric film that covers the lower conductor layer; and an upper conductor layer having an upper electrode portion provided on the inorganic dielectric film. The lower conductor layer has a lower electrode portion that together with the upper electrode portion and the inorganic dielectric film constitutes a capacitor, and a coil portion that constitutes an inductor. The entire inorganic dielectric film is formed integrally, and the lower conductor layer is in contact only with the substrate, inorganic dielectric film, and upper conductor layer.
Abstract:
A method includes providing a circuit board having an outer surface, the outer surface configured with a plurality of discrete electrical components that are each manufactured independently of one another, and coating the outer surface and the plurality of discrete electrical components with a first protective dielectric layer. The method further includes coating the first protective dielectric layer with a second dielectric layer. The second dielectric layer includes a dielectric material having a modulus of elasticity less than 3.5 Giga-Pascal (GPa), a dielectric constant less than 2.7, a dielectric loss less than 0.002, a breakdown voltage strength in excess of 2 million volts/centimeter (MV/cm), a temperature stability to 3000 Celsius, a defect densities less than 0.5/centimeter, a pinhole free in films greater than 50 Angstroms, and is capable of being deposited conformally over and under 3D structures with thickness uniformity less than or equal to 10%.
Abstract:
A method for fabricating an interposer includes: forming on one primary surface of a first substrate a thin-film capacitor including a first capacitor electrode, a crystalline capacitor dielectric film formed on the first electrode and a second capacitor electrode formed on the dielectric film; and forming on the primary surface of the first substrate and the capacitor a first layer as semi-cured, and a first partial electrode to be a part of a through-electrode, buried in the first resin layer and electrically connected to the first electrode or the second electrode. The method further includes cutting an upper part of the first partial electrode and an upper part of the first resin layer with a cutting tool; forming on one primary surface of a second substrate a second resin layer as semi-cured, and a second partial electrode to be a part of the through-electrode, buried in the second resin layer and disposed in alignment with the first partial electrode; cutting an upper part of the second partial electrode and an upper part of the second resin layer with a cutting tool; making thermal processing with the first resin layer and the second resin layer in close contact with each other to adhere the first resin and the second resin layer to each other while jointing the first and second partial electrodes to each other; removing the first substrate; forming on said one primary surface of the second substrate a third resin layer, covering the thin-film capacitor, burying a third partial electrode to be a part of the through-electrode in the third resin layer, supporting the third resin layer by a supporting substrate; and removing the second substrate.
Abstract:
A support substrate structure for supporting an electronic component thereon comprises a thermal conductive substrate, a first ceramic layer, an insulating thermal conductive layer and a conductive pattern. The thermal conductive substrate has an upper surface and a lower surface; the first ceramic layer is disposed on the upper surface of the thermal conductive substrate; the insulating thermal conductive layer is disposed on the first ceramic layer; and the conductive pattern is formed on a surface of the insulating thermal conductive layer. The present invention also discloses a method for fabricating the aforementioned support substrate structure.
Abstract:
A thin-film capacitor assembly includes a first metal bottom electrode, a dielectric layer, a second metal etch-stop layer, and a subsequent metal top electrode. The first metal bottom electrode is in contact with the dielectric layer. The second metal etch-stop layer is in contact with the dielectric layer. The subsequent metal top electrode is in contact with the second metal etch-stop layer. Processing of the thin-film capacitor assembly includes totally removing a stiffener after assembling the first metal bottom electrode as a layer to the dielectric layer and the second metal etch-stop layer. The stiffener is removed from above and on the second metal etch-stop layer. The thin-film capacitor assembly is laminated to a mounting substrate.
Abstract:
The invention relates to a fabrication method of a composite metal oxide dielectric film containing at least two metallic elements on a substrate, and a composite metal oxide dielectric film fabricated thereby. The method includes: forming an amorphous film containing at least one of the metallic elements; preparing a hydrothermal solution where a precursor of the remaining element of the metallic elements is mixed; immersing the amorphous film into the hydrothermal solution; and hydrothermally treating the amorphous film so that the remaining one of the metallic elements is synthesized to the amorphous film, thereby forming a crystallized composite metal oxide film.
Abstract:
Circuit carrier having a metal support layer, at least some portions of which are covered by a dielectric layer, the latter having a plurality of pores, with the pores being sealed by glass at least on the opposite side of the dielectric layer to the support layer.