Abstract:
System for measuring a thickness of a circuit component on a printed circuit board (PCB). The system includes a first circuit, a power plane, a power strip, a calibration strip, a temperature sensor, and a second circuit. The power plane is coupled to the first circuit. The power strip is for providing power to the power plane and is disposed in the PCB connected to the power plane. The power strip has at least two vias. The calibration strip has a predetermined width and is disposed in said PCB. The calibration strip has at least two vias for measuring a voltage drop. The temperature sensor is coupled to the calibration strip and configured to measuring a temperature of the calibration strip. The second circuit is coupled to the temperature sensor and configured to determine the thickness of the calibration strip based on at least the temperature of the calibration strip.
Abstract:
According to the present invention, for a module in which a plurality of integrated circuit devices are mounted in parallel, the inductance generated by the unit length of a branched signal line on a motherboard is so set that it is smaller for a branched signal line a longer distance from its branching point to its distal end, and is so set that it is larger for a branched signal line having a shorter distance from its branching point to its distal end, so that the time required for transmission of a signal from the branching point to the distal end of each branched signal line is the same.
Abstract:
To provide a printed wiring board where the impedance between pads through which differential signals pass has been set to a predetermined standard value. The printed wiring board includes a first conductor layer extending over an area excluding a hole formed for each pad group and filled with a dielectric, and a second conductor layer extending over an area containing areas facing the hole. The hole encompasses a plurality of areas facing predetermined respective pads which are adjacent to each other and which form the pad group from among the plurality of pads.
Abstract:
A differential signal connector that is used for edge card application has a plurality of differential signal terminals and associated ground terminals arranged in “triplets”, i.e., distinct sets of three conductive terminals, each such triplet including a pair of differential signal terminals and one associated ground terminal. The ground terminal is flanked by the two differential signal terminals and each triplet is spaced apart from an adjacent triplet by a spacing which is greater than any single spacing between adjacent terminals within a triplet. Circuit boards to which such a connector is mounted are also disclosed and they have a particular pattern of termination traces, commonly taking the form of plated vias extending through the circuit board. These vias are arranged in a triangular pattern and the ground reference plane of the circuit board is provided with voids, one void being associated and encompassing a pair of the differential signal vias of a single terminal triplet. This reduces the capacitance of the signal vias and thereby increases the impedance of the circuit board within the launch area to lessen impedance discontinuities in the connector-circuit board interface.
Abstract:
An embodiment of a cable system includes a cable that has a conductor, a power layer and dielectric material. The conductor is operative to carry a signal, the dielectric material is located at least partially between the conductor and the power layer, and the power layer is operative as ground. The power layer is formed of a conductive material and includes a first region and an adjacent second region. The first region includes a greater amount of the conductive material than the second region so that the power layer is less resistant to bending along the second region than along the first region. Methods and other systems are also provided.
Abstract:
In a high-frequency module, intermediate ground electrodes are provided between a common ground electrode and upper-surface ground electrodes for mounting high-frequency components on an upper surface of a multilayer substrate. With regard to the number of via-hole conductors interconnecting ground electrodes, the number of via-hole conductors between the intermediate ground electrodes and the common ground electrode is larger than the number of via-hole conductors between the upper-surface ground electrodes and the intermediate ground electrodes.
Abstract:
A method for achieving a desired value of electrical impedance between conductors of an electrical power distribution structure by electrically coupling multiple bypass capacitors and corresponding electrical resistance elements in series between the conductors. The resistance elements may be annular resistors, and may provide the designer a greater degree of control of the system ESR. The annular resistors may comprise a first terminal, an annular resistor, and a second terminal. The second terminal may be located within the confines of the annular resistor. The annular resistors may be printed onto a conductive plane (e.g. a power plane or a ground plane), or may be a discrete component.
Abstract:
A method and an apparatus for improving the delivery and filtering of power to a semiconductor device is disclosed by organizing out interconnects (pins, balls, pads or other interconnects) used to carry power in a striped configuration that shortens the conductive path required between a power source and a semiconductor device and that reduces the resistance of that conductive path.
Abstract:
In a coupling adjusting structure for a double-tuned circuit according to the present invention, first and second coils are configured such that a pair of first conductive patterns formed on a first surface of a printed circuit and a corresponding pair of second conductive patterns formed on a second surface of the printed circuit board are connected via corresponding connecting conductors, thereby making the first and second coils low and thin. Also, one end of the first coil and the corresponding end of the second coil are disposed close to each other, a first ground conductive pattern is disposed at least on the first surface of the printed circuit, and a first jumper connected to the first ground conductive pattern is disposed between the first and second coils so as to adjust an inductive coupling of the double-tuned circuit, thereby achieving a coupling adjusting structure for a double-tuned circuit whose inductive coupling is adjustable.
Abstract:
A multi-layered circuitized substrate for high-frequency applications. Conductive via-holes extend between two non-adjacent conductive layers for transmitting high-frequency signals therebetween. For each via-hole, shielding rings connectable to a reference voltage are provided, each ring formed in a corresponding intermediate conductive layer between the two non-adjacent conductive layers. The rings define a shielding coaxial structure for the via-hole. Preferably, the intermediate conductive layers are spaced apart from the via-hole, and particularly from respective lands at the ends thereof, in order to reduce stray capacitance associated with the via-hole without losing the shielding effect provided by the rings.