Abstract:
A printed circuit board and a method of manufacturing a printed circuit board are provided. The printed circuit board includes an insulating layer, a circuit layer embedded in the insulating layer, a solder resist layer disposed on one surface of the insulating layer, the solder resist layer having a cavity of a through-hole shape to expose a part of the circuit layer from the insulating layer, and a metal post embedded in the solder resist layer and exposed to outside via an opening of the solder resist layer, and the metal post includes a first post metal layer, a post barrier layer, and a second post metal layer disposed in that order.
Abstract:
A printed circuit assembly (PCA) that provides for a method of rebuilding an electrically operated automatic transmission solenoid module. The PCA allows for a repairable yet rugged interconnection of several solenoids that reside within the span of the module assembly.
Abstract:
A printed circuit board according to the embodiment includes an insulating layer; a first pad on a top surface of the insulating layer; a second pad on a bottom surface of the insulating layer; and a via formed in the insulating layer and having one surface connected to the first pad and an opposite surface connected to the second pad, wherein the via includes a plurality of via parts which are at least partially overlapped with each other.
Abstract:
A component carrier includes a layer stack formed of an electrically insulating structure and an electrically conductive structure with a bore extending into the layer stack. The bore includes a first bore section with a first diameter and a connected second bore section with a second diameter differing from the first diameter. The component carrier further comprises a thermally conductive material filling substantially the entire bore. The bore is in particular formed by mechanical drilling.
Abstract:
A multilayer wiring board includes a first metal foil wiring layer that has at least two or more layers of metal foil wiring lines and is arranged on a mounting surface side for mounting a surface mount type component, a wire wiring layer that is arranged on an opposite side of the mounting surface, and in which an insulation coating wire is wired, and a first interlayer conduction hole that has a conduction part which electrically connects the metal foil wiring line positioned on a surface of the first metal foil wiring layer to at least one of the metal foil wiring line in an inner layer of the first metal foil wiring layer and the insulation coating wire of the wire wiring layer. A hole diameter of the first interlayer conduction hole varies in a board thickness direction of the multilayer wiring board.
Abstract:
The present disclosure relates to the method of manufacturing circuit having lamination layer using LDS (Laser Direct Structuring) to ease the application on surface structure for applied product of various electronic circuit and particularly, in which can form circuit structure of single-layer to multiple-layer on the surface of injection-molded substrate in the shape of plane or curved surface, metal product, glasses, ceramic, rubber or other material.
Abstract:
A wiring board includes a first insulating layer coating a first wiring layer. A first through hole is opened in a surface of the first insulating layer and exposes a surface of the first wiring layer. A first via arranged in the first through hole includes an end surface exposed to the surface of the first insulating layer. A gap is formed between the first insulating layer and the first via in the first through hole. A second wiring layer is stacked on the surface of the first insulating layer and the end surface of the first via. The second wiring layer includes a pad filling the gap. The pad is greater in planar shape than the first through hole.
Abstract:
A printed wiring board includes a substrate having first and second cavities, first electronic components accommodated in the first cavity, second electronic components accommodated in the second cavity, and a build-up layer formed on the substrate and including an insulating interlayer such that the interlayer is covering the first and second cavities. The substrate has a first projection structure partitioning the first components in the first cavity and a second projection structure partitioning the second components in the second cavity, and the first and second cavities and the first and second projection structures are formed in the substrate such that T1
Abstract:
An apparatus having a plurality of insulating layers, a plurality of conductive layers and a plating is disclosed. The conductive layers may be separated by the insulating layers. A first pattern in a first of the conductive layers generally extends to an edge castellation. A second pattern in a second of the conductive layers may also extends to the edge castellation. The plating may be disposed in the edge castellation and connect the first pattern to the second pattern. The plating in the castellation may extend at most between a subset of the conductive layers.
Abstract:
Disclosed herein are a printed circuit board including an electronic component embedded therein and a method for manufacturing the same. The printed circuit board including an electronic component embedded therein includes: a core formed with a cavity which is formed of a through hole and has a side wall formed with an inclined surface having a top and bottom symmetrically formed based on a central portion thereof; an electronic component embedded in the cavity; insulating layers stacked on upper and lower portions of the core including the electronic component; and external circuit layers formed on the insulating layers.