Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
A cathodoluminescence detection system is provided, including a source of charged particles arranged to illuminate a sample with a charged particle beam, and an optical path having at least two optical components capable of collecting and conveying light radiation coming from the illuminated sample to an analysis device; each optical component of the optical path is selected so that: the maximum output angle of the optical component is less than or equal to 120% of the maximum acceptance angle of the next optical component; and the diameter of the radiation coming from the optical component in the input plane of the next optical component is less than or equal to 120% of the useful input diameter of the next optical component.
Abstract:
A device for multi-photon fluorescence microscopy for obtaining information from biological tissue has a laser unit for generating an excitation radiation, an optical unit implemented for focusing the excitation radiation for generating an optical signal at various locations in or on an object to be investigated, and a detector module for capturing the optical signal from the region of the object. The optical unit is thereby displaceable at least in one direction relative to the object for generating the optical signal at various locations in or on the object. The invention further relates to a method for multi-photon fluorescence microscopy. In said manner, a device and a method for multi-photon fluorescence microscopy are provided for obtaining information from biological tissue, allowing recording of section images in an object with a large field of view, and thereby are simply constructed and reliable in operation.
Abstract:
An illumination system for a lithographic or inspection apparatus. A plurality of optical waveguides transmit radiation from the illumination source to an output. A switching system enables selective control of one or more subsets of the optical waveguides. An inspection method uses an illumination system and inspection and lithographic apparatuses comprise an illumination system. In one example, the optical waveguides and switching system are replaced by a plurality of parallel optical bandpass filter elements. The optical bandpass filter elements each only transmit a predetermined wavelength or a band of wavelengths of radiation. At least two of the parallel optical bandpass filter elements each being operable to transmit a different wavelength or band of wavelengths.
Abstract:
A physical quantity measuring system includes an optical source which emits a measurement light to fiber Bragg grating (FBG) lines containing FBGs connected in cascade by an optical fiber, an optical switch including a common port for receiving the measurement light from the optical source, and input/output ports connected to the FBG lines, the optical switch outputting the measurement light, from the common port to each of the input/output ports at different time points, a wavelength separator which receives light reflected from the respective FBGs of the FBG lines, and separating the reflected light into a plurality of component lights having predetermined wavelengths, after the measurement light is output from the input/output ports, and optical receivers which receives the component lights from the wavelength separator and detects light intensities of the component lights.
Abstract:
A material sensing apparatus comprises an excitation source configured to induce waves in a workpiece, and an optical waveguide interferometer configured to sense the induced waves in the workpiece. The optical waveguide interferometer comprises a probe segment having a probe segment end, and an adjustable coupler configured to permit setting a gap between the probe segment end and the workpiece. A controller is coupled to the adjustable coupler and configured to set the gap between the probe segment end and the workpiece.
Abstract:
A device for measuring a spectrum of a light beam in a wavelength range chosen beforehand, device called a spectrometer, the spectrum being generated by a fluid to be analyzed, the spectrometer including: at least one light source; a measurement cell including the fluid to be analyzed; a measurement detector placed on an optical pathway taken by a measurement optical beam being emitted by the light source and encountering the measurement cell; and a reference detector placed on an optical pathway taken by a reference optical beam being emitted by the light source and not encountering the measurement cell, wherein the spectrometer is borne by an automotive vehicle and includes an element for forming an incident optical beam emitted by the at least one light source, and for dividing the optical beam into a measurement beam and a reference beam, in the form of a waveguide.
Abstract:
A device for multi-photon fluorescence microscopy for obtaining information from biological tissue is provided. The device comprising a laser unit for generating an excitation radiation, an optical unit which is formed to focus the excitation radiation for generating an optical signal at different locations in or on an object to be examined, and a detector module for detecting the optical signal from the region of the object. The optical unit for generating the optical signal at different locations in or on the object is movable in at least one direction relative to the object.
Abstract:
A cathodoluminescence detection system is provided, including a collection optic collecting light radiation coming from a sample illuminated by a charged particle beam and sending the light radiation to an analyzer, a positioner for the collection optic; the positioner including several translation components of the collection optic. Each translation component effects the translation of the collection optic in one dimension of space so that the translation components effect the translation of the collection optic in several dimensions of space.