Abstract:
Some novel features pertain to a substrate that includes a first dielectric layer, a first interconnect, a first cavity, and a first electroless metal layer. The first dielectric layer includes a first surface and a second surface. The first interconnect is on the first surface of the substrate layer. The first cavity traverses the first surface of the first dielectric layer. The first electroless metal layer is formed at least partially in the first cavity. The first electroless metal layer defines a second interconnect embedded in the first dielectric layer. In some implementations, the substrate further includes a core layer. The core layer includes a first surface and a second surface. The first surface of the core layer is coupled to the second surface of the first dielectric layer. In some implementations, the substrate further includes a second dielectric layer.
Abstract:
A thin-film multi-layer micro-wire structure includes a substrate and a layer located on the substrate or forming a part of the substrate. One or more micro-channels are located in the layer. Each micro-channel has a width less than or equal to 20 microns. A cured electrically conductive micro-wire is located only within each micro-channel. The micro-wire has a thickness less than or equal to 20 microns, including silver nano-particles, and having a percent ratio of silver that is greater than or equal to 40% by weight. An electrolessly plated layer is located at least partially within each micro-channel between the micro-wire and the layer surface and in electrical contact with the micro-wire. The plated layer has a thickness less than a thickness of the micro-wire so that the micro-wire and plated layer form the thin-film multi-layer micro-wire.
Abstract:
A system for backside metallization and reinforcement of glass substrates to provide support and protection during handling and processing of the glass substrates. A sacrificial substrate is removeably attached to a glass substrate comprising through-holes, backside metallized pads, and under-bump metallization (UBM) pads enclosing the backside metallized pads. The sacrificial substrate comprises a sacrificial layer, an opaque film, and an adhesive. The sacrificial substrate protects the backside metallized pads and UBM pads, and reinforces the glass substrate.
Abstract:
A thin-film multi-layer micro-wire structure includes a substrate and a layer located on the substrate or forming a part of the substrate. One or more micro-channels are located in the layer. Each micro-channel has a width less than or equal to 20 microns. A cured electrically conductive micro-wire is located only within each micro-channel. The micro-wire has a thickness less than or equal to 20 microns, including silver nano-particles, and having a percent ratio of silver that is greater than or equal to 40% by weight. An electrolessly plated layer is located at least partially within each micro-channel between the micro-wire and the layer surface and in electrical contact with the micro-wire. The plated layer has a thickness less than a thickness of the micro-wire so that the micro-wire and plated layer form the thin-film multi-layer micro-wire.
Abstract:
An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
Abstract:
A printed wiring board includes an interlayer resin insulation layer having a penetrating hole, a conductive circuit formed on a first surface of the interlayer resin insulation layer, a filled via conductor formed in the penetrating hole of the interlayer resin insulation layer and connected to the conductive circuit, a first surface-treatment coating structure formed on a first surface of the filled via conductor and having an electroless plating structure, and a second surface-treatment coating structure formed on a second surface of the filled via conductor on an opposite side with respect to the first surface-treatment coating structure and having an electroless plating structure. The filled via conductor includes a first conductive layer formed on side wall of the penetrating hole and a plated material filling the penetrating hole, and the first surface-treatment coating structure has a thickness which is different from a thickness of the second surface-treatment coating structure.
Abstract:
A printed wiring board includes an interlayer resin insulation layer having a penetrating hole for a via conductor, a conductive circuit formed on one surface of the interlayer resin insulation layer, a via conductor formed in the penetrating hole and having a protruding portion protruding from the other surface of the interlayer resin insulation layer, and a surface-treatment coating formed on the surface of the protruding portion of the via conductor. The via conductor is connected to the conductive circuit and has a first conductive layer formed on the side wall of the penetrating hole and a plated layer filling the penetrating hole.
Abstract:
A compliant printed flexible circuit including a flexible polymeric film and at least one dielectric layer bonded to the polymeric film with recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry. Openings can be printed in the dielectric covering layer to provide access to at least a portion of the circuit geometry.
Abstract:
An object of the present invention is to provide a flexible circuit board that maintains high insulation reliability, exhibits high wiring adhesion, has low thermal expansion, and allows the formation of a fine circuit thereon. Specifically, the present invention provides a flexible circuit board, wherein at least a nickel plating layer is laminated on a polyimide film to form a polyimide film provided with a nickel plating layer and a wiring pattern is applied to the nickel plating layer thereof. The polyimide film has a thermal expansion coefficient of 0 to 8 ppm/° C. in the temperature range from 100 to 200° C., and the nickel plating layer has a thickness of 0.03 to 0.3 μm.
Abstract:
A surface of an object to be plated is subjected to a treatment for palladium catalyst impartation to impart a palladium catalyst to the surface of an insulating part thereof. A palladium conductor layer is formed on the insulating part from a solution for palladium conductor layer formation which contains a palladium compound, an amine compound, and a reducing agent. On the palladium conductor layer is then directly formed a copper deposit by electroplating. Thus, the work is converted to a conductor with the solution for palladium conductor layer formation, which is neutral, without using an electroless copper plating solution which is highly alkaline. Consequently, the polyimide is prevented from being attacked and no adverse influence is exerted on adhesion. By adding an azole compound to the solution for palladium conductor layer formation, a palladium conductor layer is prevented from depositing on copper. Thus, the reliability of connection between the copper part present on a substrate and the copper deposit formed by electroplating is significantly high.