Abstract:
A via is provided on a printed circuit board with at least one additional depression encompassing the via, such that the via passes through a portion of the depression. Solder can pool in the depression, allowing for a stronger mechanical bond and eliminating many issues with respect to a lack of coplanarity between a lead and the printed circuit board. The depression can be provided with plugged and unplugged vias, and improves the mountings associated with both.
Abstract:
A method of manufacturing a microelectronic device including imprinting a layer on a substrate with an imprinted pattern, the imprinted pattern defining a first anchor impression within the layer that includes a first base region positioned adjacent the layer and a first distal region positioned opposite the first base region, the first distal region defining a cross sectional area greater than a cross sectional area of the first base region, and the imprinted pattern defining a second anchor impression within the layer that includes a second base region positioned adjacent the layer and a second distal region positioned opposite the second base region, the second distal region defining a cross sectional area greater than a cross sectional area of the second base region and greater than a cross sectional area of the first distal region.
Abstract:
A semiconductor module includes a multilayer substrate. The multilayer substrate includes a first metal layer and a first ceramic layer over the first metal layer. An edge of the first ceramic layer extends beyond an edge of the first metal layer. The multilayer substrate includes a second metal layer over the first ceramic layer and a second ceramic layer over the second metal layer. An edge of the second ceramic layer extends beyond an edge of the second metal layer. The multilayer substrate includes a third metal layer over the second ceramic layer.
Abstract:
Provided are a semiconductor package and a module printed circuit board (PCB) for mounting the same. Each of the semiconductor package and the module PCB includes a substrate, a first-type pad structure disposed in a first region of the substrate, and a second-type pad structure disposed in a second region of the package substrate. The first-type pad includes a first conductive pad disposed on the package substrate and a first insulating layer coated on the package substrate. The first insulating layer has a first opening by which a portion of a sidewall of the first conductive pad is exposed, and partially covers the first conductive pad. The second-type pad includes a second insulating layer coated on the package substrate to have a second opening and a second conductive pad disposed on the package substrate in the second opening to have an exposed sidewall. In this structure, the semiconductor package and the module PCB can have an excellent resistance to physical and thermal stresses to enhance structural reliability.
Abstract:
A structure which is able to stably achieve electrical coupling, and which is capable of efficient optical coupling is provided. Optical coupling is achieved with the lower surface of an opto-electric package and the upper surface of an opto-electric hybrid board. On the other hand, electrical connection is achieved by means of contact between electrodes on the side surfaces of the opto-electric package and electrodes on the inner-wall side surfaces of a socket mounted on the opto-electric hybrid board. The electrodes are in electrical contact with electrical wiring.
Abstract:
A multilayer wiring board has a ceramic substrate, on which a multilayer wiring section is formed. One of the conductor layers has a grounded pattern. Each of the conductor layers has a reference pattern, which is usable as a standard in calculation of an electric capacitance. An electric capacitance is measured between the grounded pattern and the three-dimensional wiring path. On the other hand, a theoretical electrical capacitance is calculated on the basis of a reference value of electric capacitance which has been measured between the reference pattern and the grounded pattern. The measured value for the wiring path is compared to the calculated value to determine whether the three-dimensional wiring path is good or bad. As the multilayer wiring section has the reference patterns, the electric capacitance for the normal wiring path can be obtained by calculation without preparing the normal acceptable product.
Abstract:
A multilayer wiring board has a ceramic substrate, on which a multilayer wiring section is formed. The ceramic substrate has an internal conductor layer, which is connected to a test pad. The first conductor layer is formed, and then an electric capacitance is measured between the test pad and a wiring pattern of the first conductor layer. On the other hand, an electrical capacitance is calculated under the normal wiring pattern condition. The measured value is compared to the calculated value to determine whether the wiring pattern is good or bad. Similar measurements and comparisons are carried out for each of the second through fifth conductor layers to determine whether a three-dimensional wiring path is good or bad. As the ceramic substrate has an internal conductor layer, the electric capacitance of the wiring can be measured without an overall grounded layer in the multilayer wiring section, which is a characteristic part different from others among a variety of the multilayer wiring boards.
Abstract:
A capacitive device is provided. The capacitive device includes a first electrode and a second electrode below the first electrode and spaced apart from the first electrode, wherein at least one of the first electrode and the second electrode includes a plurality of conductive step sections, the plurality of conductive step sections having different heights. The capacitive device also includes an insulating region between the first electrode and the second electrode; and at least one slot formed on one of the first electrode and the second electrode.
Abstract:
A device mounting board has a double-layer wiring structure where a first wiring layer and a second wiring layer are stacked together with an insulating layer held between the first and second wiring layers. The first wiring layer and the second wiring layer are electrically connected by way of a via conductor provided on a side wall of a through-hole that penetrates the insulating layer. The through-hole that penetrates the insulating layer has a stepped portion. The via conductor, provided along the insulating layer in the via conductor, has a step associated with the stepped portion of the via conductor.
Abstract:
In one embodiment, an interface module is provided for connecting a plurality of signal paths to a high signal density interface. The interface module includes a board having axial conductor receptacles. The axial conductor receptacles have at least one ground via extending through the board to an interface side of the board and a shield receiving hole in the board extending into the board from a cable side of the board. At least a portion of the at least one ground via being exposed within the shield receiving hole, the shield receiving hole having a plating therein contacting the portion of the at least one ground via exposed within the shield receiving hole. The axial conductor receptacles have a plated center conductor receiving hole in the board, which extends to a signal via. The signal via extends from the center conductor hole to the interface side of the board. A non-plated hole in the board is located between the plated center conductor hole and the shield receiving hole.