Abstract:
A compact conical diffraction Littrow spectrometer is disclosed. The distortion of the conically diffracted spectral component beams is compensated and as a result, the diffracted spectral beams can still be focused into a substantially straight line to shine onto a detector array. A spectral domain optical coherence tomography (SD-OCT) system incorporating a Littrow spectrometer or a spectrometer having one or more shared focusing element(s) and an SD-OCT system incorporating a spectrometer that is substantially polarization independent are also disclosed.
Abstract:
A chemometric analyzer for analyzing a plurality of analytes. The analyzer disperses radiation by wavelength along an encoding axis. The analyzer includes a spatial radiation modulator having a plurality of radiation filters. Each radiation filter modulates the intensity of a corresponding spectral component in the radiation.
Abstract:
A measuring device for determining the concentrations of gases by radiation absorption. The device includes at least one radiation source for generating radiation, a measuring cell, which is arranged downstream of the radiation source and in which the medium to be measured is located and at least one radiation detector, which is reached by the radiation after it has been sent through the measuring cell. A radiation guide device is provided by which the radiation is guided to the radiation detector. The radiation guide device includes a main optical unit, which has, on the one hand, an optical element (4), so that the punctiform radiation source is imaged in a bar-shaped radiation spot (5) extending along a preferred direction (1), and which has, on the other hand, parallel reflection surfaces (7, 7′), which extend at right angles to the preferred direction and at the inner surfaces of which the radiation is totally reflected between the optical element (4) and the radiation detector (3, 3′).
Abstract:
A two dimensional spatial radiation modulator rotated about a rotation axis to modulate components of an incident radiation beam to encode the beam. The modulator includes sub-regions in a first annular segment being patterned to form a pair of radiation filters having substantially complementary modulation functions. The pair of radiation filters produces a first encoded component with a characteristic determined by the relative intensities of radiation from the beam incident on the pair of filters. The modulator also includes sub-regions in a second annular segment being patterned to form a filter that produces a second encoded component with a characteristic determined by the total intensity of radiation from the beam incident on the filter.
Abstract:
Systems and methods for providing spectral measurements are described. In one embodiment, a spectral measuring device comprises at least one radiation source configured to provide N (N≧2) linearly independent illuxninant sources characterized by M (M≧N) wavelength channels in a predetermined wavelength range; a sensor unit including at least one sensor, configured to be in optical communication with the radiation sources and an object; a memory storing an illuminant characterization matrix including spectral characteristics of the N illuminant sources in the M wavelength channels; and a processor configured to provide spectral responses of the object in the M wavelength channels, based at least in part on the illuminant characterization matrix. The embodiments of the invention can be used to construct a new class of compact spectral measuring devices, such as handheld color measuring devices.
Abstract:
A light fixture converts source light from one or more solid state light emitting elements to a virtual light source output. An optical element receives and diffuses light from the solid state emitters to form a processed light for the virtual source output. The optical element forms light that is relatively uniform, for example having a substantially Lambertian distribution and/or having a maximum-to-minimum intensity ratio of 2 to 1 or less over the optical area of the virtual source. In the examples, the diffuse optical processing element comprises a cavity having at least one diffusely reflective surface, and the emitting elements supply light into the cavity at locations that result in reflection and diffusion before emission through an aperture of the cavity. The aperture or a downstream processing element appears as the virtual source of the processed light from the cavity.
Abstract:
A light fixture, using one or more solid state light emitting elements, provides an unpixelated light output. An optical element receives and diffuses light from the solid state emitters to form a processed light for output via an optical output area of the fixture. The optical element forms light that is relatively uniform, for example having a substantially Lambertian distribution and/or having a maximum-to-minimum intensity ratio of 2 to 1 or less over the optical output area. In the examples, the optical element comprises a cavity having at least one diffusely reflective surface, and the emitting elements supply light into the cavity at locations not visible through an aperture of the cavity that forms the optical output area. Hence, light from the emitting element(s) is diffusely reflected one or more times within the cavity before emission as part of the uniform light output through the aperture.
Abstract:
An apparatus for selectively producing one or more of a plurality of wavelength distributions of radiation. The apparatus comprises a primary UV radiation source and one or more wavelength transforming materials separated from the primary UV radiation source, that in response to irradiation by the primary UV radiation source, produce transformed radiation having a wavelength distribution that is different from the wavelength distribution of the primary UV radiation source. None, one, or more than one of the various WT materials can be selected by the apparatus, to allow the primary UV radiation, any individual transformed radiation, or any combination of the various radiations to be to be emitted from the apparatus.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
The apparatus and methods herein provide light sources and endoscopy systems that can improve the quality of images and the ability of users to distinguish desired features when viewing tissues by providing methods and apparatus that improve the dynamic range of images from endoscopes, in particular endoscopes that have dynamic range limited because of small image sensors and small pixel electron well capacity, and other optical systems.