Abstract:
This invention provides a multilayer printed wiring board in which electric connectivity and functionality are obtained by improving reliability and particularly, reliability to the drop test can be improved. No corrosion resistant layer is formed on a solder pad 60B on which a component is to be mounted so as to obtain flexibility. Thus, if an impact is received from outside when a related product is dropped, the impact can be buffered so as to protect any mounted component from being removed. On the other hand, land 60A in which the corrosion resistant layer is formed is unlikely to occur contact failure even if a carbon pillar constituting an operation key makes repeated contacts.
Abstract:
This wiring board is provided with an insulating core substrate, a first conductor pattern, a second conductor pattern, and a conductive material. The first conductor pattern and the second conductor pattern are adhered to the insulating core substrate. The second conductor pattern has a first surface and a second surface. The second conductor pattern has a concavity and a through-hole. The opening of the concavity that opens to the first surface and the opening of the through hole that opens to the first surface are interconnected to each other. The first conductor pattern is positioned at the opening of the concavity. The first conductor pattern and the second conductor pattern are electrically connected by means of the conductive material, which fills from the opening of the through hole that opens to the second surface.
Abstract:
With the present invention, conductor grids for electronic housings and a manufacturing method for such conductor grids are provided. According to the invention, the conductor grid is produced from two metal strips (130, 110, 140) welded along the joint edge (150), with only one of the two metal strips needing to have a surface suitable for the wire bonding. The amount of the conventionally used, plated starting material can be considerably reduced in this way.
Abstract:
Provided is a circuit board in which visibility of an alignment mark is improved.In a case of manufacturing a substrate module in which a touch panel (20) and an FPC (50) are electrically connected, an alignment mark in the FPC (50) is formed by an opaque metal film, so that visibility is high. Consequently, when an alignment mark (25) in the touch panel (20) is also formed by an opaque metal film, the visibility of the alignment mark (25) also becomes high. By performing alignment using the alignment marks having high visibility, alignment between the touch panel (20) and the FPC (50) can be performed easily with high precision. As a result, the yield of the substrate module increases and modification of an alignment apparatus used for alignment becomes unnecessary, so that the manufacturing cost of the substrate module can be decreased.
Abstract:
Example multi-layer printed circuit boards (‘PCBs’) are described as well as methods of making and using such PCBs that include layers of laminate; at least one via hole traversing the layers of laminate, and a via conductor contained within the via hole, the via conductor comprising a used portion and an unused portion, the via conductor comprising copper coated with a metal having a conductivity lower than the conductivity of copper.
Abstract:
Disclosed herein are a touch screen and a method of manufacturing the same. The touch screen includes: a transparent substrate; a transparent electrode formed on the transparent substrate and including a sensing part sensing a touch input and an extension part extending from the sensing part to an edge of the transparent substrate; a wiring electrode formed at the edge of the transparent substrate and spaced apart from the extension part of the transparent electrode; and a conductive paste formed at the edge of the transparent substrate and covering both the extension part and the wiring electrode so as to electrically connect the transparent electrode to the wiring electrode, whereby the transparent electrode is formed after the wiring electrode is formed and the wiring electrode is connected to the transparent electrode through the conductive paste, thereby preventing the transparent electrode from being damaged.
Abstract:
A printed circuit board and method thereof and a solder ball land and method thereof. The example printed circuit board (PCB) may include a first solder ball land having a first surface treatment portion configured for a first type of resistance and a second solder ball land having a second surface treatment portion configured for a second type of resistance. The example solder ball land may include a first surface treatment portion configured for a first type of resistance and a second surface treatment portion configured for a second type of resistance. A first example method may include first treating a first surface of a first solder ball land to increase a first type of resistance and second treating a second surface of a second solder ball land to increase a second type of resistance other than the first type of resistance. A second example method may include first treating a solder ball land to increase a first type of resistance and second treating the solder ball land to increase a second type of resistance other than the first type of resistance.
Abstract:
A copper foil with an electric resistance film in which a film with higher electrical resistivity than the metal foil is provided on the metal foil, wherein a plurality of electric resistance films with different electric resistance is arranged in parallel on the same metal foil. With conventionally used built-in resistor elements, one resistor element is configured of one type of substance on the copper foil. Nevertheless, when actually mounting the resistor elements, the circuit design tolerance can be increased and the number of man-hours can be reduced with two resistor elements and further with a plurality of resistor elements compared to a case with one resistor element. This invention aims to provide a metal foil with a built-in resistor element comprising two or more types of resistor elements on one metal foil.
Abstract:
A circuit board includes a circuit substrate, a dielectric layer, and a patterned circuit structure. The dielectric layer covers a first surface and at least a first circuit of the circuit substrate. The dielectric layer has a second surface, at least a blind via extending from the second surface to the first circuit, a first intaglio pattern, and a second intaglio pattern. The patterned circuit structure includes at least a second circuit and a plurality of third circuits. The second circuit is disposed in the first intaglio pattern. The third circuits are disposed in the second intaglio pattern and the blind via. Each third circuit has a first conductive layer, a second conductive layer, and a barrier layer. The first conductive layer is located between the barrier layer and the second intaglio pattern and between the barrier layer and the blind via. The second conductive layer covers the barrier layer.
Abstract:
The present invention relates to a method of manufacturing a wiring board comprising: a build-up layer, in which wiring patterns are piled with insulating layers; and a core substrate, which is separately formed from the build-up layer, the method comprising the steps of: separably forming the build-up layer on a plate-shaped support; electrically connecting the core substrate to the wiring patterns of the build-up layer on the support; and removing the support from the build-up layer so as to form the wiring board, in which the build-up layer is connected to the core substrate. By separably forming the build-up layer and the core substrate, the wiring board effectively exhibiting characteristics thereof can be produced.