Abstract:
A card edge connector comprises a connector body and a conductive pad, and is constructed such that the conductive pad terminates at a predetermined distance from the end of the tip portion of the connector body, and that there is further provided a protective pad, adjacent to the terminating portion of the conductive pad, which is formed at the same time with the formation of a wiring pattern in a post-fabrication step of the wiring pattern. Using the card edge connector, an electric card and an electric equipment are also provided.
Abstract:
The present invention relates to a module component for which degradation of electrical properties caused by absorption of moisture in the air can be prevented. An intermediate layer comprises a first layer, a second layer and a core layer. The core layer comprises a material having a higher strength than the first layer and the second layer, has a network structure that extends out in planar fashion, has an outer periphery thereof positioned further to the inside than the outer peripheries of the first layer and the second layer, and is sealed between the first layer and the second layer. An upper layer is laminated on the upper surface of the intermediate layer. A lower layer is laminated on the lower surface of the intermediate layer. Mounted components are mounted on any one of the upper layer and the lower layer.
Abstract:
An insulation layer is formed on a ground layer. The insulation layer includes first and second regions for forming wiring layers. The impedance of a wiring layer formed on the second region is lower than that of a wiring layer formed on the first region. A signal line pattern is formed on the wiring layer on the first region of the insulation layer. A power supply plane is formed on the wiring layer on the second region of the insulation layer in order to feed power to the signal line pattern through a termination resistor connected to the signal line pattern.
Abstract:
An insulation layer is formed on a ground layer. The insulation layer includes first and second regions for forming wiring layers. The impedance of a wiring layer formed on the second region is lower than that of a wiring layer formed on the first region. A signal line pattern is formed on the wiring layer on the first region of the insulation layer. A power supply plane is formed on the wiring layer on the second region of the insulation layer in order to feed power to the signal line pattern through a termination resistor connected to the signal line pattern.
Abstract:
A system and method for conducting heat from electrical devices mounted on a circuit board is disclosed. A heat sink for conducting the heat is provided that includes a pair of substantially parallel vertical legs and a horizontal member coupled between the pair of substantially parallel vertical legs to form a “U” shape. The horizontal member includes an outer surface and an inner surface both having a layer of thermal interface material. The heat sink is surface mountable to a heat sink mounting pad on a surface of a printed circuit board. The heat sink mounting pad is adjacent to and thermally coupled to a heat transfer pad of an electronic device. The heat sink is thermally coupled to the electronic device.
Abstract:
Lands formed on a flexible printed circuit board are electrically connected with lands formed on a rigid printed circuit board through solder. At this point, solder resist is formed between neighboring two lands on the rigid printed circuit board, and is terminated with an end portion that is interposed between the rigid printed circuit board and the flexible printed circuit board. Accordingly, even when surplus solder is extruded onto the rigid printed circuit board, the solder resist can prevent solder bridges from being formed between the lands.
Abstract:
A system and method for conducting heat from electrical devices mounted on a circuit board is disclosed. A heat sink for conducting the heat is provided that includes a pair of substantially parallel vertical legs and a horizontal member coupled between the pair of substantially parallel vertical legs to form a nullUnull shape. The horizontal member includes an outer surface and an inner surface both having a layer of thermal interface material. The heat sink is surface mountable to a heat sink mounting pad on a surface of a printed circuit board. The heat sink mounting pad is adjacent to and thermally coupled to a heat transfer pad of an electronic device. The heat sink is thermally coupled to the electronic device.
Abstract:
There are provided a coating step for coating solder paste (3) onto the circuit board (1), a superimposing step for superimposing a connecting end (4a) of a terminal (4) also having a non-connecting end (4b) on the regions coated with solder paste (3), and a heating step for heating and melting the solder paste (3) in order to solder the connecting end (4a) onto the circuit board (1). A further step for coating adhesive material (6) onto the circuit board (1) is provided, and in the aforementioned superimposing step, the connecting end (4a) is brought into contact with the regions coated with the adhesive material (6). In the aforementioned heating step, the solder paste (3) is heated and caused to melt whilst the connecting end (4a) is in a bonded state with respect to the circuit board (1) by means of the adhesive material (6).
Abstract:
Bonding pads are formed on a main surface of a semiconductor chip. An insulating layer having openings located on the bonding pads is formed on the main surface of the semiconductor chip. Base metal layers are formed on the bonding pads. A buffer coat film having a portion laid on a periphery of the base metal layer is formed on the insulating layer. Connection layers are formed on the base metal layers. First conductors are formed on the connection layers. A seal resin exposing only top surfaces of the first conductors is formed. Lumpish second conductors are formed on the top surfaces of the first conductor. Thereby, a resin seal semiconductor package can be made compact and it has improved electrical characteristics and high reliability.
Abstract:
A socket assembly for removably receiving a solder ball of a chip package and methods for forming the same. The socket assembly is a raised construction formed over a substrate and includes a socket, a ball contact structure, and an electrical trace. A relatively thick photoresist layer, which may have a thickness in a range from about 20 microns to about 450 microns, is used in the process of forming the socket assembly. The photoresist layer may have formed therein a patterned opening used as a mold for the socket assembly. Alternatively, the photoresist layer may be an integral and permanent component of the socket assembly. The socket assembly is configured such that a solder ball may-be disposed in the socket so as to be electrically connected to the socket assembly. Optionally, the socket assembly includes one or more ball penetration structures for facilitating the establishment of electrical contact and for adapting the socket assembly to solder balls of different dimensions. The socket assembly limits the amount of vertical deformation of the solder ball so that the chip package remains reusable.