Abstract:
An optical module includes a fixed reflection film, a movable reflection film, a first driver having a plurality of sub-drivers that can be driven independently of each other via voltage application in a plan view, a second driver that changes the dimension of a gap between the fixed reflection film and the movable reflection film, and a voltage controller that applies first drive voltages to the sub-drivers and applies a second drive voltage to the second driver, and the voltage controller applies a first drive voltage set for each of the sub-drivers in accordance with parallelism between the fixed reflection film and the movable reflection film at the time when the dimension of the gap is changed.
Abstract:
A tunable optical filter is formed in the structure of an etalon. A thin electro-optic ceramic substrate is fixed between two end substrates. Each end substrate has an inner parallel surface toward said electro-optic ceramic substrate covered by an electrode layer and a reflecting layer. An adhesive which attaches the electro-optic ceramic substrate to each first and second end substrates has a consistency so as to avoid stress on the electro-optic ceramic substrate. A voltage imposed on the electro-optic ceramic substrate by the electrode layers on the inner parallel surfaces of the first and second end substrates effectively controls an optical distance between the reflective coating layers on the inner parallel surfaces of the first and second end substrates of the etalon structure. The electro-optic ceramic substrate is preferably PMN-PT ((1-x)Pb(Mg⅓Nb⅔)O3-x—PbTiO3) and no more than 160 μm thick.
Abstract:
A device for measuring a spectrum of a light beam, in a wavelength range chosen beforehand, the spectrum being generated by a sample to be analyzed, the optical measuring device including at least one light source, a measurement cell and a measurement detector placed on a measurement optical pathway, the measurement optical pathway being taken by a measurement optical beam emitted by the light source, and encountering the measurement cell, a self-calibration unit allowing any drift of the light sources, due to environmental conditions or conditions of use, to be taken into account independently of whether a sample to be analyzed is present in or absent from the measurement cell, the self-calibration unit including elements for creating a reference optical pathway, taken by a reference optical beam emitted by the light source, and not encountering the measurement cell, and a reference detector.
Abstract:
A spectrophotometer includes a plurality of sensor elements arranged together, each sensor element including a filter; a light sensor optically coupled with an output of the filter; and a barrier that surrounds the filter and light sensor and a space between the filter and light sensor. For each sensor element, the barrier blocks light that has not passed through the filter from reaching the light sensor including such that light from one sensor element is not detected by another of the sensor elements.
Abstract:
An optical filter includes a first substrate, a second substrate opposed to the first substrate, a first reflecting film provided to the first substrate, a second reflecting film provided to the second substrate, and opposed to the first reflecting film, a first electrode provided to the first substrate, a second electrode provided to the second substrate, and opposed to the first electrode, and a voltage control section adapted to control an electrical potential difference between the first electrode and a second electrode, and when switching a wavelength of a light beam to be dispersed by switching the electrical potential difference between the first electrode and the second electrode, and measuring an intensity of the light beam dispersed, the voltage control section switches the electrical potential difference from a first electrical potential difference to a second electrical potential difference larger than the first electrical potential difference.
Abstract:
The invention relates to controllable Fabry-Perot interferometers which are produced with micromechanical (MEMS) technology. The prior art interferometers have a temperature drift which causes inaccuracy and requirement for complicated packaging. According to the invention the interferometer arrangement has both an electrically tuneable interferometer and a reference interferometer on the same substrate. The temperature drift is measured with the reference interferometer and this information is used for compensating the measurement with the tuneable interferometer. The measurement accuracy and stability can thus be improved and requirements for packaging are lighter.
Abstract:
A fast switching arbitrary frequency light source for broadband spectroscopic applications. The light source may operate near 1.6 um based on sideband tuning using an electro-optic modulator driven by an arbitrary waveform generator. A Fabry-Perot filter cavity selects a single sideband of the light source. The finesse (FSR/ΔνFWHM) of the filter cavity may be chosen to enable rapid frequency switching at rates up to 5 MHz over a frequency range of 40 GHz (1.3 cm−1). The bandwidth, speed and spectral purity are high enough for spectroscopic applications where rapid and discrete frequency scans are needed. Significant signal-to-noise advantages may be realized using the rapid and broadband scanning features of this system in many areas of spectroscopy, e.g., process monitoring and control, reaction dynamics, and remote sensing (e.g., greenhouse gas monitoring, biological/chemical agent screening).
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
A spectroscopic measurement device includes a variable wavelength interference filter provided with a first reflecting film, a second reflecting film, and an electrostatic actuator for changing a gap amount of a gap between the first reflecting film and the second reflecting film, a detection section adapted to detect the light intensity of the light taken out by the variable wavelength interference filter, a voltage setting section and a voltage control section for applying an analog voltage varying continuously to the electrostatic actuator, a voltage monitoring section for monitoring the voltage applied to the electrostatic actuator, a storage section for storing V-λ data, and a light intensity acquisition section for obtaining the light intensity detected by the detection section at a timing at which the light transmitted through the variable wavelength interference filter has the measurement target wavelength based on the voltage monitored by the voltage monitoring section.
Abstract:
A gas detector includes a receiver configured to receive light from a light source through gas, the light source having a bandwidth on the order of an absorption linewidth of the gas, the receiver including at least a first etalon having a transmission bandwidth on the order of the absorption linewidth of the gas, the transmission bandwidth of the first etalon being substantially smaller than the bandwidth of the light source. The gas detector further includes a first detector for detecting light transmitted through the first etalon, a second detector for detecting light reflected from the first etalon, and a processor that determines the quantity of gas based on the detected transmitted and reflected light. The gas detector can further include a second etalon with a transmission bandwidth approximately equal and adjacent to the transmission bandwidth of the first etalon. Alternatively, the gas detector can include a beam separator that separates the light from the light source into a first beam and a second beam, with a small deflection angle between the first beam and the second beam, thereby modifying the effective thickness of a single optical element for each beam and forming the first and second etalon in the optical element.