Abstract:
An optical measuring apparatus includes a measuring device configured to measure, by a shot unit, data in a predetermined wavelength range, a controller configured to analyze the measured data, a storage storing the measured data of a plurality of shots and the analysis results of the measured data, and a display configured to display the analysis results and waveform data based on the measured data on a single display screen.
Abstract:
A system and method for performing field measurement and testing of a plurality of widely spaced laser beams used in visual warning technology (VWT). VWT uses a combination of widely spaced laser beams, to warn civilians from approaching too close to military security areas. The widely spaced laser beams are displaced using rhomboidal prisms. Each rhomboidal prism receives a corresponding laser beam and displaces it toward a collecting lens. The lens focuses the displaced beams received thereon onto an imaging sensor for testing. Beam shutters may be used for selectively blocking one or more beams in order to test the beams separately and in different combinations.
Abstract:
A waveform acquiring unit acquires a time waveform of an electromagnetic wave. The time waveform is decomposed into wavelet expansion coefficients by wavelet transform. Influence levels of the respective wavelet expansion coefficients to a spectrum are calculated. The wavelet expansion coefficients are weighted based on at least the influence levels of the wavelet expansion coefficients to the spectrum. The weighted wavelet expansion coefficients are converted into time waveforms by inverse wavelet transform. Thus, the time waveforms that holds spectrum information needed for spectroscopic analysis and has a reduced noise is provided.
Abstract:
Apparatus and methods of spectral searching that employ wavelet coefficients as the basis for the searching. The disclosed apparatus and methods employ a wavelet lifting scheme to transform spectroscopic data corresponding to an unknown pure material/mixture to a vector of wavelet coefficients, compare the wavelet coefficient vector for the unknown pure material/mixture with a library of wavelet coefficient vectors for known pure materials/mixtures, and identify the closest match to the unknown pure material/mixture based on the comparison of wavelet coefficient vectors. Because the wavelet lifting scheme can generate the wavelet coefficient vectors for the unknown pure material/mixture as well as the known pure materials/mixtures to conform to a desired compression level, the disclosed apparatus and methods can perform spectral searching with increased speed and reduced memory requirements, thereby making the disclosed apparatus and methods amenable for use in hand-held instruments for on-site material identification.
Abstract:
Provided are a system and a method for detecting a number of layers of few-layer graphene employing multispectral image reproduction process to provide rapid detection of numbers of layers of few-layer graphenes on transparent or non-transparent substrates. The application of the system and method in relevant industries expedites validation and/or verification of the number of layers of an FLG product and improves the quality control efficiency thereof.
Abstract:
In a color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the samples to a spectrograph. A rendering device may also be a display having a member supporting a color measuring instrument for receiving light from an area of the screen. The color measuring instruments provide for non-contact measurements of color samples rendered on a display or a sheet, and are self-calibrating by the use of calibration references.
Abstract:
Volcanic ash is identified within a field of regard (FOR) by obtaining spectral radiance data comprising brightness temperature values over a specified spectral range for each field of view (FOV) within the FOR, determining a baseline brightness temperature value over the specified spectral range that is identified as representing no volcanic ash, and assigning one or more FOVs having brightness temperature values that deviate from the baseline brightness temperature value by a predetermined amount with an indication of containing volcanic ash.
Abstract:
A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
Abstract:
Methods for in situ detection and classification of analyte within a fluid sample are provided. In one embodiment, the method can include: (a) continuously flowing the fluid sample through a multivariate optical computing device, wherein the multivariate optical computing device illuminates an area of the fluid sample as it flows through the multivariate optical computing device to elicit a continuous series of spectral responses; (b) continuously measuring the series of multivariate spectral responses as the fluid sample flows through the multivariate optical computing device; (c) detecting an analyte (e.g., phytoplankton) in the sample based on an multivariate spectral response of the plurality of spectral responses; and (d) classifying the analyte based on the multivariate spectral response generated by the analyte.
Abstract:
A dispersive element is disclosed which is designed to receive incident light (1) and disperse the incident light (1) into multiple spatially separated wavelengths of light. The dispersive body (DB) comprises a collimation cavity (COLL) to collimate the incident light (1), at least two optical interfaces (PRIS) to receive and disperse the collimated light (2) and a collection cavity (CLCT) to collect the dispersed light (3) from the at least two dispersive interfaces (op1, op2) and to focus the collected light (4).