Abstract:
A signal transmission circuit comprising: first and second transmission lines connected to each other; a first impedance storage circuit storing an impedance of the first transmission line; and a control circuit that outputs match information between an impedance of the second transmission line and the impedance stored in the first impedance storage circuit.
Abstract:
An exemplary patch panel includes a printed circuit board having a plurality of signal terminals for connecting to two pairs of peripheral component interconnect express (PCI-E) X1 differential signal terminals of an I/O controller hub (ICH), an interface terminal of a high definition multimedia interface (HDMI), four pairs of differential signal terminals of the HDMI, four pairs of differential signal terminals of a graphic and memory controller hub (GMCH), one of another differential signal terminal of the GMCH, and two pairs of differential signal terminals of a PCI-E X16 slot. Therefore, the ICH is connected to the PCI-E X16 slot via the patch panel for supporting a PCI-E X1 card while the GMCH is connected to the HDMI via the patch panel. A patch panel connector is provided to mount the patch panel on a motherboard.
Abstract:
A circuit board comprises signaling through-holes that pass through a plurality of layers, including signal trace and digital ground plane layers, and power reference plane layers. Clearances are set to achieve a desired impedance characteristic for the through-holes. At a power reference plane layer, the clearance is defined around multiple neighboring through-holes.
Abstract:
A signal-segregating connector for use in a system having a printed circuit board, a first electrical structure and a second electrical structure. The connector includes a first set of conductive elements to convey signals between the first electrical structure and the printed circuit board, and a second set of conductive elements to convey signals between the first electrical structure and the second electrical structure.
Abstract:
Embodiments of the invention include a Printed Wiring Board (PWB) having a first via connected to a top-side signal source, a second via connected to a bottom-side signal destination, and a third via connected to the first via on a lower signal layer of the PWB and further connected to the second via on an upper signal layer of the PWB. In embodiments of the invention, the third via is referred to as an S-Turn via. The S-Turn PWB routing configuration advantageously reduces reflections causes by via stubs at Multi-Giga Hertz (MGH) frequencies. Other embodiments are described.
Abstract:
A memory system includes a first signal line to carry a first signal that enters the module at a first end of the first signal line and a second signal line to carry a second signal that enters the module at a first end of the second signal line. The module includes a first memory device disposed on a first side of the module and a second memory module disposed on a second side of the module positioned opposite to the first side. The first memory device and the second memory device are connected to the first signal line and the second signal line. The first signal and the second signal traverse alongside each other to arrive in turn at the first memory device and the second memory device. The system may include a controller that provides the first signal and the second signal.
Abstract:
A memory system includes a controller chip and a memory module coupled to the controller chip. A signal line carries a signal that traverses the signal line until reaching a termination at an end of the signal line. A clock line carries a clock signal that traverses the clock line to reach a second termination at an end of the clock line. The module includes a first memory device connected to the signal line and the clock line such that the signal and the clock signal arrive at the first memory device at substantially the same time. The module includes a second memory device connected to the signal line and the clock line such that the signal and the clock signal arrive at the second memory device at substantially the same time and after the signal and the clock signal arrive at the first memory device.
Abstract:
A motherboard for backplane buses is provided that reduces noise due to entry of external signals into signal wiring which interconnects modules, or noise due to any external signals entering a power supply after being routed around the power supply.An EBG pattern formed up of two wiring regions different from each other in impedance is periodically disposed in at least three arrays as part of the power supply layer(s) constituting a microstripline structure (one layer adjacent to a signal layer is a power supply layer, and the other layer is interposed in air) or a stripline structure (both layers adjacent to a signal layer are power supply layers); the part of the power supply layer(s) not being involved in signal transmission between the modules on the motherboard for backplane buses.
Abstract:
The invention relates to an electronic-board arrangement, comprising at least two electronic boards (110, 110a-110n), particularly integrated circuit boards, which are attached to a backplane (10) which provides electrical interconnection between the at least two electronic boards (110, 110a-110n). An electronic interconnect board (40) providing electrical interconnect between the at least two electronic boards (110, 110a-110n) is arranged in a space (90) in between the at least two electronic boards (110, 110a-110n) and the backplane (10).
Abstract:
A midplane has a first side to which contact ends of a first differential connector are connected and a second side opposite the first side to which contact ends of a second differential connector are connected. The midplane includes a plurality of vias extending from the first side to the second side, with the vias providing first signal launches on the first side and second signal launches on the second side. The first signal launches are provided in a plurality of rows, with each row having first signal launches along a first line and first signal launches along a second line substantially parallel to the first line. The second signal launches are provided in a plurality of columns, with each column having second signal launches along a third line and second signal launches along a fourth line substantially parallel to the third line.