Abstract:
A metallic printed board is formed by laminating an insulation layer on the surface of a metallic sheet as a base, and then electronic parts are mounted on the conductor pattern formed on the surface of the insulation layer. A double-sided printed board mounted thereon electronic parts is placed in parallel. Both the printed boards are supported and fixed monolithically by filling the space between the printed boards with an insulation resin and curing the resin. Furthermore, an insulation resin is laminated on the surface of the printed board in such a manner that the resin may cover the mounted electronic parts, and cured. The heat generated from the electronic parts can be efficiently transmitted to the insulation resins by using a resin having a high thermal conductivity for both of the insulation resins, and the heat is then emitted from the surfaces of the metallic sheet or the insulation resin.
Abstract:
A thin and small computer system that can be used generally for control equipment or the like, includes a CPU chip, peripheral control chips, and other components mounted in the form of a bare chip, whereby a computer system having a so-called ISA architecture can be incorporated in an IC card-like casing. Computer system components are fixedly attached to a double-sided printed wiring board. One side of the printed wiring board includes the CPU chip, an IO subsystem chip and memories and the other side includes an image control circuit, memories and the peripheral control chips. A 236-pin connector is formed on a long side of this card-type computer, and is connected to a control bus and an IO bus of the card-type computer. The control bus and the IO bus are not located at opposed positions in the connector. A position of separating the buses from each other is off the center of the connector. Power lines or ground lines are provided at the separating positions in the connector, thus preventing occurrence of unnecessary electromagnetic radiation noise.
Abstract:
A thin and small computer system that can be used generally for control equipment or the like, includes a CPU chip, peripheral control chips, and other components mounted in the form of a bare chip, whereby a computer system having a so-called ISA architecture can be incorporated in an IC card-like casing. A 236-pin connector is formed on a long side of this card-type computer, and is connected to a control bus and an IO bus of the card-type computer. The control bus and the IO bus are not located at opposed positions in the connector. A position of separating the buses from each other is off the center of the connector. Power lines or ground lines are provided at the separating positions in the connector, thus preventing occurrence of unnecessary electromagnetic radiation noise. RAMs are mounted on a sub-PW board, which provides flexibility for the system. A bare chip of an EEPROM is mounted on another printed wiring board, which enables electrical forming to be performed after such mounting.
Abstract:
A semiconductor chip module includes semiconductor chips each of which has contacts on its entire front face. A multi-layered organic circuit board having a small dielectric constant is provided for mounting the semiconductor chips. Intermediate ceramic substrates having the same thermal expansion coefficient as that of the semiconductor chip, are also provided. Each such intermediate ceramic substrate has contacts on its front and back faces corresponding to those of the semiconductor chip. These contacts are electrically connected directly in a one-to-one relationship. The contacts on the semiconductor chip and the corresponding ones on the front face of the intermediate ceramic substrates are connected by solder. The contacts on the back face of the intermediate ceramic substrate and the corresponding contacts on the front face of the multi-layered ceramic circuit board are connected by respective conductive pins having a predetermined flexibility and rigidity through a predetermined gap therebetween. With this arrangement, the relative displacement due to a thermal expansion difference between the intermediate ceramic substrate and the multi-layered organic circuit board is permitted without causing substantial stress thereon.
Abstract:
A ceramic structural body having electronic components thereon comprises a ceramic package of a ceramic layer having substantially uniform thickness. The package comprises a ceramic element of dish-shaped or box-shaped configuration including a base portion, a sidewall portion extending from the base portion substantially at right angles thereto and a flange portion extending from the free end of the sidewall portion substantially at right angles thereto. The ceramic package is formed by press-forming a ceramic green sheet having substantially uniform thickness. A plurality of metal layers are provided on the surface of desired portions of the ceramic element.
Abstract:
A circuit board structure includes a first circuit board, a second circuit board and a plurality of first connection portions. The first circuit board has a first opening, and the second circuit board is disposed inside the first opening of the first circuit board. The first circuit board and the second circuit board are electrically independent from each other. The first connection portions are connected to the first circuit board and the second circuit board.
Abstract:
IC device assemblies including a power delivery bus board that is mounted to a primary PCB (i.e., motherboard) that further hosts a power-sink device and a power-source device. The bus board, as a secondary PCB, may be surface-mounted on a back side of the primary PCB opposite the power source and sink devices, which are mounted on the front side of the primary PCB. The bus board need only be dimensioned so as to bridge a length between first and second back-side regions of the primary PCB that are further coupled to a portion of the front-side pads employed by the power-sink device. The secondary PCB may be purpose-built for conveying power between the source and sink devices, and include, for example, short, wide traces, that may be formed from multiple heavyweight metallization layers.
Abstract:
An integrated power module packaging structure includes a housing, a first circuit board, a second circuit board, a first pin, a second pin and a third pin. The housing has a cavity. The second circuit board is located above the first circuit board, and both them are received in the cavity. A switching module is disposed on the first circuit board. A high side current/voltage detecting device and a driving device are disposed on the second circuit board. The first pin, the second pin and the third pin are disposed between the first circuit board and the second circuit board. The first pin connects the high side current/voltage detecting device and the switching module in series. The second pin connects the switching module. The driving device controls the switching module through the third pin.
Abstract:
The circuit board assembly includes a first circuit board having a first plurality of electronic components attached to a major surface of the first circuit board. The first plurality of electronic components is electrically interconnected to a first plurality of conductive pads defined on the major surface of the first circuit board. A second circuit board has a second plurality of electronic components attached to a first major surface of the second circuit board. The second plurality of electronic components is electrically interconnected to a second plurality of conductive pads defined on a second major surface of the second circuit board. The first and second circuit board are attached by coupling the first and second plurality of conductive pads. A portion of the first plurality of electronic components on the first circuit board are disposed within a cavity defined by the second major surface of the second circuit board.
Abstract:
A method of manufacturing a wiring board unit, the wiring board unit including a semiconductor package that includes a memory chip, a wiring board on which the semiconductor package is mounted, and an insertion base inserted between the wiring board and the semiconductor package, the method includes: forming a plurality of connection portion groups in a base material, the connection portion groups each including a plurality of connection portions that each electrically connect a board-side pad of the wiring board and an external terminal of the semiconductor package to each other; forming the insertion base such that resistances of the connection portions included in the connection portion groups are adjusted in accordance with types of target memory chips; and connecting the external terminals and the board-side pads to one another by using the connection portion group selected in accordance with the type of the memory chip.