Abstract:
A compact LED module includes: a circuit substrate, formed with an opening, a pair of combination holes and at least one through via area formed with a plurality of through vias; a reflection cup, formed with a light inlet, a light outlet and a pair of combination posts, wherein the pair of combination posts are combined with the pair of combination holes for allowing the reflection cup to be fastened on a first surface of the circuit substrate, and the light inlet is aligned with the opening; and a LED unit, installed with a LED light source and formed with at least one soldering area, wherein each of the soldering areas is connected to each of the through via areas by utilizing solder, thereby allowing the LED unit to be fastened on a second surface of the circuit substrate, and the LED light source is aligned with the opening.
Abstract:
A plurality of suspension boards and an inspection substrate are integrally supported by a support frame. In each suspension board, a line is formed on a conductive first support substrate via a first insulating layer. The first support substrate and the line are electrically connected by a first via in the first insulating layer. In the inspection substrate, a conductor layer is formed on a conductive second support substrate with a second insulating layer sandwiched therebetween. The second support substrate and the conductor layer are electrically connected by a second via in the second insulating layer. The first via and the second via have the same configuration.
Abstract:
A method for making an interconnection component is disclosed, including forming a plurality of metal posts extending away from a reference surface. Each post is formed having a pair of opposed end surface and an edge surface extending therebetween. A dielectric layer is formed contacting the edge surfaces and filling spaces between adjacent ones of the posts. The dielectric layer has first and second opposed surfaces adjacent the first and second end surfaces. The dielectric layer has a coefficient of thermal expansion of less than 8 ppm/° C. The interconnection component is completed such that it has no interconnects between the first and second end surfaces of the posts that extend in a lateral direction. First and second pluralities of wettable contacts are adjacent the first and second opposed surfaces. The wettable contacts are usable to bond the interconnection component to a microelectronic element or a circuit panel.
Abstract:
A power supply board includes: a first board including a top surface on which a processor is capable of being mounted, a bottom surface located on an opposite side of the top surface, and a plurality of first through holes and a plurality of second through holes capable of being electrically connected with the processor by penetrating through the first board from the top surface to the bottom surface; a second board arranged at a position distant from the bottom surface of the first board and provided with a power supply device; a first conductor mounted on the bottom surface of the first board and electrically connects the plurality of first through holes and the power supply device, and a second conductor mounted on the bottom surface of the first board and electrically connects the plurality of second through holes and the power supply device.
Abstract:
A method of making an imprinted micro-wire structure includes providing a substrate having an edge area and a central area separate from the edge area and providing first, second, and third different stamps. A curable bottom, connecting layer, and top layer are formed on the substrate. A bottom-layer micro-channel is imprinted in the bottom layer in the central area and the edge area, a connecting-layer micro-channel is imprinted in the connecting layer in the edge area over the bottom-layer micro-channel, an edge micro-channel is imprinted in the top layer in the edge area over the connecting-layer micro-channel, and top-layer micro-channels are imprinted in the top layer over the central area. Micro-wires are formed in each micro-channel. The bottom-layer micro-wire in the central area is electrically connected to the edge micro-wire in the edge area and is electrically isolated from the top-layer micro-wire.
Abstract:
A light-emitting device capable of ensuring an electric connection between a light-emitting element and an electrode without generating any problem in practical use, by both connecting methods with a solder and a connector, and a lighting device provided with the light-emitting device are provided. The light-emitting device according to the present invention has a plurality of LED chips, and a soldering electrode land and a connector connecting electrode land electrically connected to the chips, on a ceramic substrate. The soldering electrode land is formed of a first conductive material having a function to prevent diffusion to a solder, and the connector connecting electrode land is formed of a second conductive material having a function to prevent oxidation.
Abstract:
A method of making an imprinted micro-wire structure includes providing a substrate, a first stamp, and a different multi-level second stamp. A curable bottom layer is provided over the substrate. One or more bottom-layer micro-channel(s) are imprinted in the curable bottom layer with the first stamp and a bottom-layer micro-wire formed in each bottom-layer micro-channel. A curable multi-layer is formed adjacent to and in contact with the cured bottom layer. First and second multi-layer micro-channels and a top-layer micro-channel are imprinted in the curable multi-layer with the multi-level second stamp. Either two bottom-layer micro-wires are electrically connected through the first and second multi-layer micro-wires and a top-layer micro-wire or two top-layer micro-wires are electrically connected through the first and second multi-layer micro-wires and a bottom-layer micro-wire.
Abstract:
A light-emitting device capable of ensuring an electric connection between a light-emitting element and an electrode without generating any problem in practical use, by both connecting methods with a solder and a connector, and a lighting device provided with the light-emitting device are provided. The light-emitting device according to the present invention has a plurality of LED chips, and a soldering electrode land and a connector connecting electrode land electrically connected to the chips, on a ceramic substrate. The soldering electrode land is formed of a first conductive material having a function to prevent diffusion to a solder, and the connector connecting electrode land is formed of a second conductive material having a function to prevent oxidation.
Abstract:
A printed circuit board has a substrate having a circuit pattern; a primary component receiving hole positioned on the substrate and having an inner surface electrically connected with the circuit pattern; and at least one secondary component receiving hole positioned on the substrate around the primary component receiving hole, and having an inner surface electrically connected with the circuit pattern and the inner surface of the primary component receiving hole.
Abstract:
A method of making an imprinted micro-wire structure includes providing a substrate having an edge area and a central area separate from the edge area and providing a first stamp and a multi-level second stamp. A curable bottom layer and multi-layer are provided on the substrate. A bottom-layer micro-channel is imprinted in the bottom layer. A multi-layer micro-channel and a top-layer micro-channel are imprinted in the multi-layer. Micro-wires are formed in each micro-channel. The bottom-layer micro-wire extends from the central area into the edge area. The multi-layer micro-wire contacts the bottom-layer micro-wire in the edge area. The top-layer micro-wire is over the central area and is separate from the multi-layer micro-wire and the bottom-layer micro-channel. The bottom-layer micro-wire is electrically connected to the multi-layer micro-wire and is electrically isolated from the top-layer micro-wire.