Abstract:
An optical filter is disclosed including two laterally variable bandpass filters stacked at a fixed distance from each other, so that the upstream filter functions as a spatial filter for the downstream filter. This happens because an oblique beam transmitted by the upstream filter is displaced laterally when impinging on the downstream filter. The lateral displacement causes a suppression of the oblique beam when transmission passbands at impinging locations of the oblique beam onto the upstream and downstream filters do not overlap.
Abstract:
An optical device includes a first protrusion group in which protrusions protruding from a conductor surface of a substrate are arranged in a first direction with a first period, a dielectric layer that covers the conductor surface and the first protrusion group, and a second protrusion group in which metal nanoparticles are arranged on the dielectric layer in the first direction with a second period different from the first period. When one of the first period and the second period is defined as Px1, the other of the first period and the second period is defined as Px2, and the wavelength of irradiation light is defined as λ, λ>Px1>Px2 and 0
Abstract:
An analysis method includes spectroscopically separating light from a light source via a subject into plural wavelength ranges, imaging the subject with respect to each wavelength range, and thereby, acquiring plural spectroscopic images, dividing a subject image into plural areas in each of the spectroscopic images, analyzing a spectrum of the spectroscopically-separated lights of each area with respect to the plural spectroscopic images, and thereby, analyzing a spectral characteristic, and analyzing a component of the subject based on the spectral characteristic in at least one area of the plural areas, and has a pixel selection step of eliminating the area having the same spectral characteristic as the spectral characteristic with respect to the light from the light source from objects of the analysis of the component before the analyzing of the component.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
A multispectral imaging device for satellite observation utilizing “push broom” scanning over an observed area centered on one or more wavelengths which can be electrically controlled to produce a filtering function wavelength band, thus obviating the need for conventional stacking.
Abstract:
A device for measuring calories of food items includes a food item holding unit on which an inspection-target food item including a plurality of food materials is placed, a light source for radiating near-infrared rays at a specific wavelength region to the food item, and a light reception unit that receives light emitted from the light source and then reflected from the food item. The light receiving device receives light reflected from the food item when the near-infrared rays at the specific wavelength are radiated to the food item. A control unit calculates calories of the food item in accordance with measurement values of absorbances of the near-infrared rays at the specific wavelength region which are received by the light reception unit.
Abstract:
A light guide plate comprises a light incidence surface for receiving light rays; a transforming fluorescent powder disposed on the light incidence surface for converting the light rays into white rays; a reflection surface for reflecting the light rays and destroying total internal reflection formed inside the light guide plate to generate planar light rays; a light emitting surface for emitting the planar light rays; and a lateral reflection surface disposed away from the light incidence surface for reflecting the light rays from the light incidence surface and the reflection surface; the lateral reflection surface having a compensative fluorescent powder disposed thereon for adjusting a color of the planar light rays. The light guide plate can reduce the backlight color difference for a panel of a single-end incident type to improve visual quality level and the quality of products.
Abstract:
The present invention provides a highly reliable spectral module. When light L1 proceeding to a spectroscopic unit (4) passes through a light transmitting hole (50) in the spectral module (1) in accordance with the present invention, only the light having passed through a light entrance side unit (51) formed such as to become narrower toward a substrate (2) and entered a light exit side unit (52) formed such as to oppose a bottom face (51b) of the light entrance side unit (51) is emitted from a light exit opening (52a). Therefore, stray light M incident on a side face (51c) or bottom face (51b) of the light entrance side unit (51) is reflected to the side opposite to the light exit side unit (52) and thus is inhibited from entering the light exit side unit (52). Therefore, the reliability of the spectral module (1) can be improved.
Abstract:
An analysis method includes spectroscopically separating light from a light source via a subject into plural wavelength ranges, imaging the subject with respect to each wavelength range, and thereby, acquiring plural spectroscopic images, dividing a subject image into plural areas in each of the spectroscopic images, analyzing a spectrum of the spectroscopically-separated lights of each area with respect to the plural spectroscopic images, and thereby, analyzing a spectral characteristic, and analyzing a component of the subject based on the spectral characteristic in at least one area of the plural areas, and has a pixel selection step of eliminating the area having the same spectral characteristic as the spectral characteristic with respect to the light from the light source from objects of the analysis of the component before the analyzing of the component.
Abstract:
A device for sorting and concentrating electromagnetic energy impinging a surface of the device, the surface including at least one plasmonics-based surface structure or similar structure of periodic or quasi-periodic surface topography. The device is characterized in that the surface (V) is provided with at least two such surface structures (2), acting as individual concentrator structures, which are at least partially spatially overlapped or superposed.