Abstract:
A trim structure for a vehicle includes at least two surface regions having different surface appearances and is manufactured in one unit. A method for providing a trim structure for a vehicle with at least two surface regions having different surface appearances comprises the steps of: a) providing a first surface appearance on at least a portion of an external surface of a trim structure body; b) providing a second surface appearance by applying a material layer on top of at least a part of the at least a portion having the first surface appearance; and c) removing a portion of the applied material layer, thereby revealing at least a portion of the under-lying first surface appearance.
Abstract:
A metal oxide-polymer laminate includes a polymer layer, and a metal oxide layer laminated on a surface of the polymer layer and formed by an aerosol deposition method. At least a portion of the metal oxide layer is embedded in the polymer layer in a thickness direction thereof.
Abstract:
This disclosure relates to a method of manufacturing a cover material for a molded part of a motor vehicle and to a respective cover material. The method includes the following: providing a cover skin which is provided with a seam or perforation and comprises a face and a back; and applying a back layer to the back of the cover skin, wherein, prior to applying the back layer, the seam or perforation is sealed on the back of the cover skin by applying a liquid, gelatinous or paste-like sealing material to the back of the cover skin above the seam or perforation.
Abstract:
Disclosed are methods and systems for dispersing nanoparticles into a matrix. Disclosed is a system and method for coating a carrier film with a resin, spraying the resin with a suspended nanoparticle solution, and then transferring the resin-nanoparticle matrix to a collection vessel for dispensing for end use. Also, suspended nanoparticle solution is sprayed onto carrier film, the film is dried, a fabric layer is coated with resin layer, and nanoparticles are then transferred into the fabric resin layer to create a nanoparticle-infused fabric matrix. Fabric layers can also be coated with resin and sprayed with nanoparticles. Also disclosed is a system and method for coating a first carrier film with nanoparticles, coating a second carrier film with resin, and transferring nanoparticles from first carrier into the resin layer on the second carrier to create a nanoparticle infused resin material that can be collected and dispensed for end use.
Abstract:
Tubular ceramic structures, e.g., anode components of tubular fuel cells, are manufactured by applying ceramic-forming composition to the external surface of the heat shrinkable polymeric tubular mandrel component of a rotating mandrel-spindle assembly, removing the spindle from the assembly after a predetermined thickness of tubular ceramic structure has been built up on the mandrel and thereafter heat shrinking the mandrel to cause the mandrel to separate from the tubular ceramic structure.
Abstract:
There is provided a method of producing a composite which is capable of suitably forming a silicone resin layer for preventing the facilitated transport film from entering the porous support in an acidic gas separation film formed by forming a facilitated transport film on a porous support, and the composite. The problem is solved by the method of producing a composite including hydrophilizing the surface of the porous support using a roll-to-roll system; and coating the hydrophilized surface of the porous support with a silicone coating solution that becomes the silicone resin layer using the roll-to-roll system.
Abstract:
Articles having poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, the articles include a substrate and a multilayer coating attached to the substrate. The multilayer coating includes a silica layer that is the outermost layer, the silica layer containing acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The multilayer coating also includes a PVA layer disposed between a surface of the substrate and the outermost silica layer. The PVA and silica nanoparticle coatings can be used on a large variety of substrates and tend to be resistant to impacts, scratches, wet abrasions, soil and fog.
Abstract:
The present invention is directed to a method of treating a reinforcement cord, comprising the steps of A) atomizing a mixture of at least one polymerizable monomer, a halogenated saturated hydrocarbon, and a carrier gas to form an atomized mixture; B) generating an atmospheric pressure plasma from the atomized mixture; and C) exposing the reinforcement cord to the atmospheric pressure plasma under conditions suitable to form a polymer strongly bonded to the reinforcement cord and capable of bonding to rubber.
Abstract:
Disclosed herein is an optical article including a multilayer optical film and a primer layer disposed on the multilayer optical film. The primer layer consists essentially of a sulfopolyester and a crosslinker. The multilayer optical film may be a reflective film, a polarizer film, a reflective polarizer film, a diffuse blend reflective polarizer film, a diffuser film, a brightness enhancing film, a turning film, a mirror film, or a combination thereof. A microstructured or unstructured optical layer may be disposed on the primer layer opposite the multilayer optical film. Also disclosed herein is a method of making the optical article. Also disclosed herein is a display device including the optical article.
Abstract:
A polymer workpiece is described. The workpiece has an upper main surface, a lower main surface, an injection-mold separating surface and a flow attack edge surface. The flow attack edge surface is formed in the region between the injection-mould separating surface and the lower main surface as a planar surface with an angle α with respect to the injection-mould separating surface of 20° to 70°, and/or deviates by an amount a from 0.0 mm to 0.5 mm from the planar surface.