A SCANNING MEMS MIRROR DEVICE
    153.
    发明公开

    公开(公告)号:US20230257255A1

    公开(公告)日:2023-08-17

    申请号:US18014365

    申请日:2021-07-06

    Abstract: The improved scanning MEMS mirror device disclosed herein comprises a mirror body that is rotatable around a rotation axis with respect to a stationary body, wherein a rotation of the mirror body is flexibly restrained with at least one coupling element that biases the mirror body towards a neutral state. The coupling element comprises at least a bridge section and a first leaf spring section and a second leaf spring section. The first leaf spring section extends in an extension direction from a first end thereof at the bridge section towards a second end thereof that is connected to the mirror body. The second leaf spring section extends in an extension direction from a first end thereof at the bridge section towards a second end thereof where it is connected to the stationary body. The extension direction of the first leaf spring section and the extension direction of the second leaf spring section are at least substantially the same as the second planar direction. The leaf spring sections have a thickness defined in a direction orthogonal to the reference plane that is smaller than their width, defined in said first planar direction. The construction of the improved scanning MEMS mirror device results in an increased eigenfrequency of undesirable eigenmodes.

    FLEXURE-BASED, TIP-TILT-PISTON ACTUATION MICRO-ARRAY

    公开(公告)号:US20180180872A1

    公开(公告)日:2018-06-28

    申请号:US14218970

    申请日:2014-03-19

    Abstract: A flexure-based micro-array having a plurality of micro-assemblies, each comprising: an object; and at least three electrostatic actuation modules for tipping, tilting, and/or piston-actuating the object, each actuation module comprising: a base with first and second electrodes electrically isolated from each other; an electrically conductive lever arm; a first flexure bearing suspending the lever arm adjacent the first and second electrodes so that electrical activation of at least one of the first and second electrodes produces an electrostatic moment of force on the lever arm to resiliently bias the first flexure bearing and pivot the lever arm about a fulcrum; and a second flexure bearing connecting the lever arm to the object at a connection location that is different from other connection locations of the other actuation modules so that pivoting the lever arm about the fulcrum induces the second flexure bearing to pivot the object about an object pivot axis defined between two of the other connection locations while the second flexure bearing decouples the lever arm from object displacements induced by two of the other actuation modules connected to the two other connection locations defining the object pivot axis, wherein the plurality of micro-assemblies are arranged with the objects juxtaposed in a substantially 2D array.

Patent Agency Ranking