Abstract:
Systems and methods for integration of fluorescence and reflective imaging are provided. The system and method can measure reflectance and fluorescence spectrally and spatially with co-registered hyperspectral signatures, and can output a co-registered image from first and second co-registered hyperspectral image data sets.
Abstract:
A standard plane sample which supplies an optical characteristic measuring device with reference data. The standard plane sample including a sample portion that is measured by the optical characteristic measuring device to supply measurement data, and a recording medium that stores identification data for identifying a kind of the sample portion as well as reference data corresponding to the optical characteristic of the sample portion.
Abstract:
A system for comparative interferogram spectrometry includes an interferometer configured to generate interferograms from incident radiation from a target region, an interferogram database containing stored interferograms, and a processing subsystem configured to receive the generated interferograms and compare the received interferograms to the stored interferograms.
Abstract:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
Abstract:
A real-time bulk material analyzing system is disclosed for analyzing the elemental characteristics of bulk material passing by the system on a moving conveyor belt. An exemplary embodiment includes a source of illumination emitting white light for exciting bulk material to be analyzed, and a hyperspectral imaging spectrometer for capturing spectral reflectance from bulk material excited by the illumination source. A non-hazardous source of excitation can be used, which allows the bulk material to pass unobstructed and undisturbed through the detector array.
Abstract:
A compact spectrometer operable in a wavelength range of 4.5 or more microns includes an entrance slit, a collimating mirror, a grating, a focusing mirror and a first focal plane. At least some radiation passing through the slit follows an optical path in which at least some radiation passing through the slit is reflected by the collimating mirror onto the grating, which in turn reflects at least some radiation onto the focusing mirror, which in turn reflects and focuses at least some radiation at a first focal plane and onto the two-dimensional array of detectors. Each column in the two-dimensional array of detectors corresponds to a wavelength in the 4.5 or more micron range, the two-dimensional array includes a plurality of columns that collectively correspond to wavelengths spanning the 4.5 or more micron range, and each adjacent pair of columns in the two-dimensional array of detectors corresponds to two wavelengths that differ by an equal amount. The entrance slit, the collimating mirror, the grating, the focusing mirror and the first focal plane are positioned within a volume that is equal or less than 192 cubic inches in size.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A real-time bulk material analyzing system is disclosed for analyzing the elemental characteristics of bulk material passing by the system on a moving conveyor belt. An exemplary embodiment includes a source of illumination emitting white light for exciting bulk material to be analyzed, and a hyperspectral imaging spectrometer for capturing spectral reflectance from bulk material excited by the illumination source. A non-hazardous source of excitation can be used, which allows the bulk material to pass unobstructed and undisturbed through the detector array.
Abstract:
A color measurement apparatus is adapted as an attachment for a personal computing system. An interface integral to the color measurement apparatus couples the color measurement apparatus to the personal computing system. A computer pointing device integral to the color measurement apparatus provides a pointer input for the personal computing system. A spectral sensing device integral to the color measurement apparatus measures light received via an input port in a plurality of spectral bands. A light source integral to the color measurement apparatus emits light external to the color measurement apparatus. The color measurement apparatus is operable in first, second and third modes of operation. In the first mode of operation, the computer pointing device provides pointer input of a user to the personal computing system. In the second mode of operation, the spectral sensing device measures light generated by a display of the personal computing system. In the third mode of operation, the light source provides light to a printed object printed by a printer coupled to the personal computing system and the spectral sensing device is adapted to receive and measure light that is returned from the printed object.
Abstract:
Light to be sensed is spreaded across an entry surface of a transmission structure with a laterally varying energy transmission function. For example, the light could be output from a stimulus-wavelength converter, provided through an optical fiber, or it could come from a point-like source or broad area source. Output photons from the transmission structure can be photosensed by photosensing components such as an array, position sensor, or array of position sensors. Wavelength information from the light can be obtained in response to the photosensing component. Spreading can be performed by air, gas, transparent material, or vacuum in a gap, by a region or other part of a lens, or by an optical fiber end surface. If the light comes from more than one source, a propagation component can both spread the light and also keep light from the sources separate.